On Three Axiom Systems for Classical Mereology
DOI:
https://doi.org/10.12775/LLP.2018.014Keywords
Mereology, axiom systemsAbstract
We correct an error and expose two redundancies in the axiom systems presented by Paul Hovda in his 2009 influential paper, ‘What is classical mereology?’.
References
Goodman, N., The Structure of Appearance, Cambridge (MA), Harvard University Press, 1951.
Hovda, P., “What is classical mereology?”, Journal of Philosophical Logic 38, 1 (2009): 55–82. DOI: http://dx.doi.org/10.1007/s10992-008-9092-4
Leonard, H.S., and Goodman, N. “The calculus of individuals and its uses”, Journal of Symbolic Logic 5, 2 (1940): 45–55. DOI: http://dx.doi.org/10.2307/2266169
Leśniewski, S., Podstawy ogólnej teoryi mnogości. I, Moskow, Prace Polskiego Koła Naukowego w Moskwie, 1916. Eng. trans.: “Foundations of the general theory of sets. I”, pages 129–173 in S. Leśniewski, Collected Works, vol. 1, ed. by S.J. Surma et al., Dordrecht, Kluwer, 1991.
Pietruszczak, A., Metamereologia, Toruń, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2000. Revised and extended Eng. trans.: Metamereology, Toruń, Nicolaus Copernicus University Scientific Publishing House, 2018. DOI: http://dx.doi.org/10.12775/3961-4
Simons, P. M., Parts. A Study in Ontology, Oxford, Clarendon, 1987. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199241460.001.0001
Tarski, A., “Les fondements de la géométrie des corps”, Księga Pamiątkowa Pierwszkego Polskiego Zjazdu Matematycznego, suppl. to Annales de la Société Polonaise de Mathématique, 7 (1929), pp. 29–33. Extended Eng. trans: “Foundations of the geometry of solids”, pages 24–29 in A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford, Clarendon, 1956.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 788
Number of citations: 3