Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity
  • Home
  • /
  • Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity
  1. Home /
  2. Archives /
  3. Vol. 28 No. 3 (2019): September /
  4. Articles

Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity

Authors

  • Thomas Macaulay Ferguson Cycorp and the Saul Kripke Center, CUNY http://orcid.org/0000-0002-6494-1833

DOI:

https://doi.org/10.12775/LLP.2018.011

Keywords

strong negation, connexive logic, constructible falsity, first-order arithmetic, connexive arithmetic, Post consistency, paraconsistent logic

Abstract

An earlier paper on formulating arithmetic in a connexive logic ended with a conjecture concerning C♯ , the closure of the Peano axioms in Wansing’s connexive logic C. Namely, the paper conjectured that C♯ is Post consistent relative to Heyting arithmetic, i.e., is nontrivial if Heyting arithmetic is nontrivial. The present paper borrows techniques from relevant logic to demonstrate that C♯ is Post consistent simpliciter, rendering the earlier conjecture redundant. Given the close relationship between C and Nelson’s paraconsistent N4, this also supplements Nelson’s own proof of the Post consistency of N4♯ . Insofar as the present technique allows infinite models, this resolves Nelson’s concern that N4♯ is of interest only to those accepting that there are finitely many natural numbers.

Author Biography

Thomas Macaulay Ferguson, Cycorp and the Saul Kripke Center, CUNY

Ontologist, Cycorp

References

Dunn, J.M., “A theorem in 3-valued model theory with connections to number theory, type theory, and relevant logic”, Studia Logica 38, 2 (1979): 149–169. DOI: http://dx.doi.org/10.1007/BF00370439

Ferguson, T.M., “On arithmetic formulated connexively”, IFCoLog Journal of Logics and Their Applications 3, 3 (2016): 357–376.

Ferguson, T.M., “Dunn-Priest quotients of many-valued structures”, Notre Dame Journal of Formal Logic 58, 2 (2017): 221–239. DOI: http://dx.doi.org/10.1215/00294527-3838853

Hasuo, I., and R. Kashima, “Kripke completeness of first-order constructive logics with strong negation”, Logic Journal of the IGPL 11, 6 (2003): 615–646. DOI: http://dx.doi.org/10.1093/jigpal/11.6.615

Kapsner, A., Logics and Falsifications: A New Perspective on Constructivist Semantics, vol. 40 of Trends in Logic, Springer, 2014. DOI: http://dx.doi.org/10.1007/978-3-319-05206-9

Meyer, R.K., “Arithmetic formulated relevantly” (Unpublished manuscript), Canberra, 1976.

Meyer, R.K., and C. Mortensen, “Inconsistent models for relevant arithmetics”, Journal of Symbolic Logic 49, 3 (1984): 917–929. DOI: http://dx.doi.org/10.2307/2274145

Nelson, D., “Constructible falsity”, Journal of Symbolic Logic 14, 1 (1949): 16–26. DOI: http://dx.doi.org/10.2307/2268973

Nelson, D., “Negation and separation of concepts in constructive systems”, pages 208–225 in A. Heyting (ed.), Constructivity in Mathematics , North-Holland, Amsterdam, 1959.

Nelson, D., and A. Almukdad, “Constructible falsity and inexact predicates”, Journal of Symbolic Logic 49, 1 (1984): 231–233. DOI: http://dx.doi.org/10.2307/2274105

Odintsov, S., and H. Wansing, “Inconsistency-tolerant description logic: Motivation and basic systems”, , pages 301–335 in V. Hendricks and J. Malinowski (eds.), Trends in Logic: 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003.

Priest, G.,“Minimally inconsistent LP”, Studia Logica 50, 2 (1991): 321–331. DOI: http://dx.doi.org/10.1007/BF00370190

Priest, G., “Inconsistent models for arithmetic I. Finite models”, Journal of Philosophical Logic 26, 2 (1997): 223–235. DOI: http://dx.doi.org/10.1023/A:1004251506208

Priest, G., “Negation as cancellation and connexive logic”, Topoi 18, 2 (1999): 141–148. DOI: http://dx.doi.org/10.1023/A:1006294205280

Slaney, J.K., R.K. Meyer, and G. Restall, “Linear arithmetic desecsed”, Logique et Analyse 39, 155–156 (1996): 379–387.

Thomason, R.H., “A semantical study of constructible falsity”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 15, 16–18 (1969): 247–257. DOI: http://dx.doi.org/10.1002/malq.19690151602

Wansing, H., “Connexive modal logic”, pages 367–383 in R. Schmidt, I. Pratt-Hartmann, M. Reynolds and H. Wansing (eds.), Advances in Modal Logic vol. 5, Kings College Publications, London, 2005.

Wansing, H., “Natural deduction for bi-connexive logic and a two-sorted typed λ-calculus”, IFCoLog Journal of Logics and Their Applications (2016): 413–439.

Wansing, H., H. Omori and T.M. Ferguson, “The tenacity of connexive logic”, IFCoLog Journal of Logics and Their Applications (2016): 279–296.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2018-08-08

How to Cite

1.
FERGUSON, Thomas Macaulay. Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity. Logic and Logical Philosophy [online]. 8 August 2018, T. 28, nr 3, s. 389–407. [accessed 23.3.2023]. DOI 10.12775/LLP.2018.011.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 No. 3 (2019): September

Section

Articles

Stats

Number of views and downloads: 360
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

strong negation, connexive logic, constructible falsity, first-order arithmetic, connexive arithmetic, Post consistency, paraconsistent logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop