Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

The Notion of the Diameter of Mereological Ball in Tarski's Geometry of Solids
  • Home
  • /
  • The Notion of the Diameter of Mereological Ball in Tarski's Geometry of Solids
  1. Home /
  2. Archives /
  3. Vol. 26 No. 4 (2017): December /
  4. Articles

The Notion of the Diameter of Mereological Ball in Tarski's Geometry of Solids

Authors

  • Grzegorz Sitek Nicolaus Copernicus University in Toruń

DOI:

https://doi.org/10.12775/LLP.2017.016

Keywords

Tarski’s geometry of solids, mereology, diameter of mereological ball, congruence of mereological balls, point-free geometry

Abstract

In  the paper "Full development of Tarski's geometry of solids" Gruszczyński and Pietruszczak have obtained the full development of Tarski’s geometry of solids that was sketched in [14, 15]. In this paper 1 we introduce in Tarski’s theory the notion of congruence of mereological balls and then the notion of diameter of mereological ball. We prove many facts about these new concepts, e.g., we give a characterization of mereological balls in terms of its center and diameter and we prove that the set of all diameters together with the relation of inequality of diameters is the dense linearly ordered set without the least and the greatest element.

Author Biography

Grzegorz Sitek, Nicolaus Copernicus University in Toruń

Department of Logic, Faculty of Humanities

References

Borsuk, K., and W. Szmielew, Foundations of geometry: Euclidean and Bolyai-Lobachevskian Geometry, Projective Geometry, North-Holland Publishing Company, Amsterdam, 1960.

Gruszczyński, R., and A. Pietruszczak, “Pieri’s structures”, Fundamenta Informaticae 81, 1–3 (2007): 1–16.

Gruszczyński, R., and A. Pietruszczak, “Full development of Tarski’s geometry of solids”, The Bulletin of Symbolic Logic 14, 4 (2008): 481–540. DOI: 10.2178/bsl/1231081462

Gruszczyński, R., and A. Pietruszczak, “Space, points and mereology. On foundations of point-free Euclidean geometry”, Logic and Logical Philosophy 18, 2 (2009): 145–188. DOI: 10.12775/LLP.2009.009

Gruszczyński, R., and A. Pietruszczak, “How to define a mereological (collective) set”, Logic and Logical Philosophy 19, 4 (2010): 309–328. DOI: 10.12775/LLP.2010.011

Gruszczyński, R., and A.C. Varzi, “Mereology then and now”, Logic and Logical Philosophy 24, 4 (2015): 409–427. DOI: 10.12775/LLP.2015.024

Leśniewski, S., “O podstawach matematyki”, Przegląd Filozoficzny XXX–XXXIV (1927–1931): 164–206, 261–291, 60–101, 77–105, 142–170.

Leśniewski, S., “On the foundations of mathematics”, pages 174–382 in Collected works, S.J. Surma et al (eds.), vol. I, Nijhoff International Philosophy Series, no. 44, Kluwer Academic Publishers, Dordrecht, 1991. English version of [6].

Pietruszczak, A., Metamereologia (Metamereology), Nicolaus Copernicus University Press, Toruń, 2000.

Pietruszczak, A., “Pieces of mereology”, Logic and Logical Philosophy 14, 2 (2005): 211–234. DOI: 10.12775/LLP.2005.014

Pietruszczak, A., Podstawy teorii części (Foundations of the theory of parthood), Nicolaus Copernicus University Scientific Publishing House, Toruń, 2013.

Pietruszczak, A., “A general concept of being a part of a whole”, Notre Dame Journal of Formal Logic 55, 3 (2014): 359–381. DOI: 10.1215/00294527-2688069

Pietruszczak, A., “Classical mereology is not elementarily axiomatizable”, Logic and Logical Philosophy 24, 4 (2015): 485–498. DOI: 10.12775/LLP.2015.017

Sitek, G., “Konstrukcje nowych pojęć w Tarskiego geometrii brył i ich zastosowanie w metaarytmetyce”, PhD thesis, Nicolaus Copernicus University in Toruń, 2016.

Tarski, A., “Les fondements de la géometrié de corps”, pages 29–33 in Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, supplement to Annales de la Societé Polonaise de Mathématique, Kraków, 1929.

Tarski, A., “Fundations of the geometry of solids”, pages 24–29 in Logic, Semantics, Metamathematics. Papers from 1923 to 1938, J.H. Woodger (ed.), Clarendon Press, Oxford, 1956. English version of [15].

Logic and Logical Philosophy

Downloads

  • PDF

Published

2017-05-25

How to Cite

1.
SITEK, Grzegorz. The Notion of the Diameter of Mereological Ball in Tarski’s Geometry of Solids. Logic and Logical Philosophy. Online. 25 May 2017. Vol. 26, no. 4, pp. 531-562. [Accessed 21 May 2025]. DOI 10.12775/LLP.2017.016.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 26 No. 4 (2017): December

Section

Articles

Stats

Number of views and downloads: 662
Number of citations: 1

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Tarski’s geometry of solids, mereology, diameter of mereological ball, congruence of mereological balls, point-free geometry
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop