Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

A Simulation of Natural Deduction and Gentzen Sequent Calculus
  • Home
  • /
  • A Simulation of Natural Deduction and Gentzen Sequent Calculus
  1. Home /
  2. Archives /
  3. Vol. 27 No. 1 (2018): March /
  4. Articles

A Simulation of Natural Deduction and Gentzen Sequent Calculus

Authors

  • Daniil Kozhemiachenko Moscow State University

DOI:

https://doi.org/10.12775/LLP.2017.009

Keywords

speedup, natural deduction, Gentzen-style calculi, simulation, proof system

Abstract

We consider four natural deduction systems: Fitch-style systems, Gentzen-style systems (in the form of dags), general deduction Frege systems and nested deduction Frege systems, as well as dag-like Gentzen-style sequent calculi. All these calculi soundly and completely formalize classical propositional logic.

We show that general deduction Frege systems and Gentzen-style natural calculi provide at most quadratic speedup over nested deduction Frege systems and Fitch-style natural calculi and at most cubic speedup over Gentzen-style sequent calculi.

Author Biography

Daniil Kozhemiachenko, Moscow State University

Department of Logic, Faculty of Philosophy

References

Bonet, M.L., and S.R. Buss, “The deduction rule and linear and nearlinear proof simulations”, The Journal of Symbolic Logic 58, 2 (1993): 688–709. DOI: 10.2307/2275228

Buss, S.R. (ed.), Handbook of Proof Theory, volume 137 of Studies in Logic and Foundations of Mathematic, Elsevier Science, Amsterdam, 1st edition, 1998.

Cook, S.A., and P. Nguyen, Logical Foundations of Proof Complexity, Cambridge University Press, Cambridge, 2010.

Cook, S.A., and R.A. Reckhow, “The relative efficiency of propositional proof systems”, The Journal of Symbolic Logic 44, 1 (1979): 36–50. DOI: 10.2307/2273702

D’Agostino, M., Investigations into the Complexity of Some Propositional Calculi, Oxford University Computing Laboratory, Oxford, 1990.

Finger, M., “Dag sequent proofs with a substitution rule”, pages 671–686 in We Will Show Them: Essays in Honor of Dov Gabbay’s 60th Birthday, London, Kings College Publications, 2005.

Fitch, F.B., Symbolic Logic: An Introduction, The Ronald Press Company, N.Y., 1952.

Gentzen, G., “Untersuchungen über das logische Schließen I”, Mathematische Zeitschrift 39 (1935): 176–210. DOI: 10.1007/BF01201353

Jaśkowski, S., “On the rules of supposition in formal logic”, Studia Logica 1 (1934).

Krajìček, J., “On the number of steps in proofs”, Annals of Pure and Applied Logics 41 (1989): 153–178.

Papadimitriou, C.H., Computational Complexity, Addison-Wesley Publishing Company, Inc., NY, 1995.

Pelletier, F.J., “A brief history of natural deduction”, History and Philosophy of Logic 20 (1999): 1–31. DOI: 10.1080/014453499298165

Reckhow, R.A., “On the lengths of proofs in the propositional calculus”, PhD thesis, University of Toronto, 1976.

Smullyan, R.M., First-Order Logic, Dover Publications, Inc., N.Y., 1995.

Tseitin, G.S., On the Complexity of Derivation in Propositional Calculus, pages 466–483, Springer-Verlag, NY, 1983.

Urquhart, A., “The complexity of gentzen systems for propositional logic”, Theoretical Computer Science 66, 1 (1989): 87–97. DOI: 10.1016/0304-3975(89)90147-3

Urquhart, A., “The relative complexity of resolution and cut-free Gentzen systems”, Annals of Mathematics and Artificial Intelligence 6, 1–3 (1992): 157–168. DOI: 10.1007/BF01531026

Urquhart, A., “The complexity of propositional proofs”, The Bulletin of Symbolic Logic 1, 4 (1995): 425–467.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2017-04-24

How to Cite

1.
KOZHEMIACHENKO, Daniil. A Simulation of Natural Deduction and Gentzen Sequent Calculus. Logic and Logical Philosophy [online]. 24 April 2017, T. 27, nr 1, s. 67–84. [accessed 30.3.2023]. DOI 10.12775/LLP.2017.009.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 27 No. 1 (2018): March

Section

Articles

Stats

Number of views and downloads: 392
Number of citations: 2

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

speedup, natural deduction, Gentzen-style calculi, simulation, proof system
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop