Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Natural Deduction for Four-Valued both Regular and Monotonic Logics
  • Home
  • /
  • Natural Deduction for Four-Valued both Regular and Monotonic Logics
  1. Home /
  2. Archives /
  3. Vol. 27 No. 1 (2018): March /
  4. Articles

Natural Deduction for Four-Valued both Regular and Monotonic Logics

Authors

  • Yaroslav Petrukhin Moscow State University

DOI:

https://doi.org/10.12775/LLP.2017.001

Keywords

natural deduction, four-valued logic, regular logic, monotonic logic, Kleene’s logics, Belnap–Dunn’s logic

Abstract

The development of recursion theory motivated Kleene to create regular three-valued logics. Remove it taking his inspiration from the computer science, Fitting later continued to investigate regular three-valued logics and defined them as monotonic ones. Afterwards, Komendantskaya proved that there are four regular three-valued logics and in the three-valued case the set of regular logics coincides with the set of monotonic logics. Next, Tomova showed that in the four-valued case regularity and monotonicity do not coincide. She counted that there are 6400 four-valued regular logics, but only six of them are monotonic. The purpose of this paper is to create natural deduction systems for them. We also describe some functional properties of these logics.

Author Biography

Yaroslav Petrukhin, Moscow State University

Department of Philosophy

References

Asenjo, F.G., “A calculus of antinomies”, Notre Dame Journal of Formal Logic, 7 (1966): 103-105. DOI: 10.1305/ndjfl/1093958482

Belnap, N.D., “A useful four-valued logic”, pages 7–37 in J.M. Dunn and G. Epstein, Modern Uses of Multiple-Valued Logic, Boston: Reidel Publishing Company, 1977. DOI: 10.1007/978-94-010-1161-7_2

Belnap, N.D., “How a computer should think”, pages 30–56 in G. Rule (ed.), Contemporary Aspects of Philosophy, Stocksfield: Oriel Press, 1977.

Bochvar, D.A., “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic, 2 (1981): 87–112. English translation of Bochvar’s paper of 1938. DOI: 10.1080/01445348108837023

Bolotov, A., and V. Shangin, “Natural deduction system in paraconsistent setting: Proof search for PCont”, Journal of Intelligent Systems, 21 (2012): 1–24. DOI: 10.1515/jisys-2011-0021

Copi, I.M., C. Cohen, and K. McMahon, Introduction to Logic, Fourteenth Edition, Routledge, New York, 2011.

Dunn, J.M., “Intuitive semantics for first-degree entailment and coupled trees”, Philosophical Studies, 29 (1976): 149–168. DOI: 10.1007/BF00373152

Finn, V.K., “Axiomatization of some three-valued propositional calculi and their algebras” (in Russian), pages 398–438 in P. Tavanets and V. Smirnov (eds.), Philosophy in the Contemporary World. Philosophy and Logic, Moscow: Nauka Publ., 1974.

Fitting, M., “Kleene’s logic, generalized”, Journal of Logic and Computation, 1 (1991): 797-810. DOI: 10.1093/logcom/1.6.797

Fitting, M., “Kleene’s three valued logics and their children”, Fundamenta Informaticae, 20 (1994): 113–131. DOI: 10.3233/FI-1994-201234

Fitting, M., “Negation as refutation”, pages 63–70 in R. Parikh (ed.), Proceedings of the Fourth Annual Symposium on Logic in Computer Science (1989), IEEE, 1989. DOI: 10.1109/LICS.1989.39159

Font, J.M., “Belnap’s four-valued logic and De Morgan lattices”, Logic Journal of the IGPL, 5 (1997): 1–29. DOI: 10.1093/jigpal/5.3.1-e

Karpenko, A.S., The Development of Many-Valued Logic (in Russian), LKI, 2010.

Kleene, S.C., Introduction to Metamathematics, Sixth Reprint, WoltersNoordhoff Publishing and North-Holland Publishing Company, 1971.

Kleene, S.C., “On a notation for ordinal numbers”, The Journal of Symbolic Logic, 3 (1938): 150–155. DOI: 10.2307/2267778

Komendantskaya, E.Y., “Functional expressibility of regular Kleene’s logics” (in Russian), Logical Investigations, 15 (2009): 116–128.

Kooi, B., and A. Tamminga, “Completeness via correspondence for extensions of the logic of paradox”, The Review of Symbolic Logic, 5 (2012): 720–730. DOI: 10.1017/S1755020312000196

Łukasiewicz, J., “On three-valued logic”, pages 87–88 in L. Borkowski (ed.), Jan Łukasiewicz: Selected Works, Amsterdam, North-Holland Publishing Company, 1997. English translation of Łukasiewicz’s paper of 1920.

Petrukhin, Y., “Natural deduction for three-valued regular logics”, Logic and Logical Philosophy 26, 2 (2017): 197–206. DOI: 10.12775/LLP.2016.025

Pietz, A., and U. Rivieccio, “Nothing but the truth”, Journal of Philosophical Logic, 42 (2013): 125–135. DOI: 10.1007/s10992-011-9215-1

Priest, G., “Logic of paradox revisited”, Journal of Philosophical Logic, 13 (1984): 153–179. DOI: 10.1007/BF00453020

Priest, G., “Paraconsistent logic”, in M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 6, Second Edition, Dordrecht: Kluwer, 2002. DOI: 10.1007/978-94-017-0460-1_4

Priest, G., “The logic of paradox”, Journal of Philosophical Logic, 8 (1979): 219–241. DOI: 10.1007/BF00258428

Tamminga, A., “Correspondence analysis for strong three-valued logic”, Logical Investigations, 20 (2014): 255–268.

Tomova, N.E., “About four-valued regular logics” (in Russian), Logical Investigations, 15 (2009): 223–228.

Zaitsev, D.V., and Y.V. Shramko, “Logical entailment and designated values” (in Russian), Logical Investigations, 11 (2004): 126–137.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2017-01-31

How to Cite

1.
PETRUKHIN, Yaroslav. Natural Deduction for Four-Valued both Regular and Monotonic Logics. Logic and Logical Philosophy [online]. 31 January 2017, T. 27, nr 1, s. 53–66. [accessed 28.3.2023]. DOI 10.12775/LLP.2017.001.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 27 No. 1 (2018): March

Section

Articles

Stats

Number of views and downloads: 268
Number of citations: 10

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

natural deduction, four-valued logic, regular logic, monotonic logic, Kleene’s logics, Belnap–Dunn’s logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop