Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Natural Deduction for Three-Valued Regular Logics
  • Home
  • /
  • Natural Deduction for Three-Valued Regular Logics
  1. Home /
  2. Archives /
  3. Vol. 26 No. 2 (2017): June /
  4. Articles

Natural Deduction for Three-Valued Regular Logics

Authors

  • Yaroslav Petrukhin Moscow Lomonosov State University

DOI:

https://doi.org/10.12775/LLP.2016.025

Keywords

natural deduction, regular logic, Kleene’s logic, three-valued logic

Abstract

IIn this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermediate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction systems are built only for strong Kleene’s logic both with one (A. Urquhart, G. Priest, A. Tamminga) and two designated values (G. Priest, B. Kooi, A. Tamminga). The purpose of this paper is to provide natural deduction systems for weak and intermediate regular logics both with one and two designated values.

Author Biography

Yaroslav Petrukhin, Moscow Lomonosov State University

Department of Philosophy

References

Bochvar, D.A., “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic, 2 (1981): 87–112. English translation of Bochvar’s paper of 1938. DOI: 10.1080/01445348108837023

Fitting, M., “Kleene’s three valued logics and their children”, Fundamenta Informaticae, 20 (1992): 113–131.

Karpenko, A.S., The Development of Many-Valued Logic (in Russian), LKI, 2010.

Kleene, S.C., “On a notation for ordinal numbers”, The Journal of Symbolic Logic, 3 (1938): 150–155. DOI: 10.2307/2267778

Kleene, S.C., Introduction to Metamathematics, Sixth Reprint, Wolters-Noordhoff Publishing and North-Holland Publishing Company, 1971.

Komendantskaya, E.Y., “Functional expressibility of regular Kleene’s logics” (in Russian), Logical Investigations, 15 (2009): 116–128.

Kooi, B., and A. Tamminga, “Completeness via correspondence for extensions of the logic of paradox”, The Review of Symbolic Logic, 5 (2012): 720–730. DOI: 10.1017/S1755020312000196

Łukasiewicz, J., “On three-valued logic”, pages 87–88 in Selected Works, L. Borkowski (ed.), Amsterdam, North-Holland Publishing Company, 1997 (English translation of Łukasiewicz’s paper of 1920).

Mendelson, E., Introduction to Mathematical Logic, Fourth Edition, Chapman & Hall, 1997.

Petrukhin, Y.I., “Correspondence analysis for first degree entailment”, Logical Investigations, 22, 1 (2016): 108–124.

Priest, G., “Paraconsistent logic”, in Handbook of Philosophical Logic, Second Edition, Vol. 6, M. Gabbay and F. Guenthner (eds.), Dordrecht, Kluwer, 2002. DOI: 10.1007/978-94-017-0460-1_4

Tamminga, A., “Correspondence analysis for strong three-valued logic”, Logical Investigations, 20 (2014): 255–268.

Tomova, N.E., “About four-valued regular logics” (in Russian), Logical Investigations, 15 (2009): 223–228.

Urquhart, A., “Basic many-valued logic”, in Handbook of Philosophical Logic, Second Edition, Vol. 2, M. Gabbay and F. Guenthner (eds.), Dordrecht, Kluwer, 2001. DOI: 10.1007/978-94-017-0452-6_4

Logic and Logical Philosophy

Downloads

  • PDF

Published

2016-08-29

How to Cite

1.
PETRUKHIN, Yaroslav. Natural Deduction for Three-Valued Regular Logics. Logic and Logical Philosophy [online]. 29 August 2016, T. 26, nr 2, s. 197–206. [accessed 31.3.2023]. DOI 10.12775/LLP.2016.025.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 26 No. 2 (2017): June

Section

Articles

Stats

Number of views and downloads: 217
Number of citations: 17

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

natural deduction, regular logic, Kleene’s logic, three-valued logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop