Natural Deduction for Three-Valued Regular Logics
DOI:
https://doi.org/10.12775/LLP.2016.025Keywords
natural deduction, regular logic, Kleene’s logic, three-valued logicAbstract
IIn this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermediate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction systems are built only for strong Kleene’s logic both with one (A. Urquhart, G. Priest, A. Tamminga) and two designated values (G. Priest, B. Kooi, A. Tamminga). The purpose of this paper is to provide natural deduction systems for weak and intermediate regular logics both with one and two designated values.References
Bochvar, D.A., “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic, 2 (1981): 87–112. English translation of Bochvar’s paper of 1938. DOI: 10.1080/01445348108837023
Fitting, M., “Kleene’s three valued logics and their children”, Fundamenta Informaticae, 20 (1992): 113–131.
Karpenko, A.S., The Development of Many-Valued Logic (in Russian), LKI, 2010.
Kleene, S.C., “On a notation for ordinal numbers”, The Journal of Symbolic Logic, 3 (1938): 150–155. DOI: 10.2307/2267778
Kleene, S.C., Introduction to Metamathematics, Sixth Reprint, Wolters-Noordhoff Publishing and North-Holland Publishing Company, 1971.
Komendantskaya, E.Y., “Functional expressibility of regular Kleene’s logics” (in Russian), Logical Investigations, 15 (2009): 116–128.
Kooi, B., and A. Tamminga, “Completeness via correspondence for extensions of the logic of paradox”, The Review of Symbolic Logic, 5 (2012): 720–730. DOI: 10.1017/S1755020312000196
Łukasiewicz, J., “On three-valued logic”, pages 87–88 in Selected Works, L. Borkowski (ed.), Amsterdam, North-Holland Publishing Company, 1997 (English translation of Łukasiewicz’s paper of 1920).
Mendelson, E., Introduction to Mathematical Logic, Fourth Edition, Chapman & Hall, 1997.
Petrukhin, Y.I., “Correspondence analysis for first degree entailment”, Logical Investigations, 22, 1 (2016): 108–124.
Priest, G., “Paraconsistent logic”, in Handbook of Philosophical Logic, Second Edition, Vol. 6, M. Gabbay and F. Guenthner (eds.), Dordrecht, Kluwer, 2002. DOI: 10.1007/978-94-017-0460-1_4
Tamminga, A., “Correspondence analysis for strong three-valued logic”, Logical Investigations, 20 (2014): 255–268.
Tomova, N.E., “About four-valued regular logics” (in Russian), Logical Investigations, 15 (2009): 223–228.
Urquhart, A., “Basic many-valued logic”, in Handbook of Philosophical Logic, Second Edition, Vol. 2, M. Gabbay and F. Guenthner (eds.), Dordrecht, Kluwer, 2001. DOI: 10.1007/978-94-017-0452-6_4
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 502
Number of citations: 17