Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Category Theory and Set Theory as Theories about Complementary Types of Universals
  • Home
  • /
  • Category Theory and Set Theory as Theories about Complementary Types of Universals
  1. Home /
  2. Archives /
  3. Vol. 26 No. 2 (2017): June /
  4. Articles

Category Theory and Set Theory as Theories about Complementary Types of Universals

Authors

  • David Ellerman University of California at Riverside

DOI:

https://doi.org/10.12775/LLP.2016.022

Keywords

universals, category theory, Plato’s Theory of Forms, set theoretic antinomies, universal mapping properties

Abstract

Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u F = {x | F(x)} for a property F(.) could never be self-predicative in the sense of uF ∈ uF . But the mathematical theory of categories, dating from the mid-twentieth century, includes a theory of always-self-predicative universals – which can be seen as forming the “other bookend” to the never-self-predicative universals of set theory. The self-predicative universals of category theory show that the problem in the antinomies was not self-predication per se, but negated self-predication. They also provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato’s Theory of Forms as well as for the idea of a “concrete universal” in Hegel and similar ideas of paradigmatic exemplars in ordinary thought.

Author Biography

David Ellerman, University of California at Riverside

Department of Philosophy

References

Allen, R.E., “Participation and predication in Plato’s Middle Dialogues”, The Philosophical Review, 69, 2 (1960): 147–164. DOI: 10.2307/2183501

Allen, R.E. (ed.), Studies in Plato’s Metaphysics, London: Routledge & Kegan Paul, 1965.

Awodey, S., Category Theory (Oxford Logic Guides), Oxford University Press, Oxford, 2006. DOI: 10.1093/acprof:oso/9780198568612.001.0001

Boolos, G., “The iterative conception of set”, The Journal of Philosophy, 68, 8 (1971): 215–231. DOI: 10.2307/2025204

Desmond, W., Art and the Absolute: A Study Of Hegel’s Aesthetics, Albany: State University of New York Press, 1986.

Ellerman, D., “Category theory and concrete universals”, Erkenntnis, 28 (1988): 409–429.

Fujisawa, N., ‘Eχειν, Mετεχειν, and idioms of ‘paradeigmatism’ in Plato’s theory of forms”, Phronesis, 19, 1 (1974): 30–58.

Galluzzo, G., and M.J. Loux (eds.) The Problem of Universals in Contemporary Philosophy, Cambridge UK: Cambridge University Press, 2015. DOI: 10.1017/CBO9781316181539

Geach, P.T., “The Third Man Again”, The Philosophical Review, 65, 1 (1956): 72–82. DOI: 10.2307/2182189

Geach, P.T., Logic Matters, Berkeley: University of California Press, 1980.

Hatcher, W., The Logical Foundations of Mathematics. Oxford: Pergamon Press, 1982.

Honderich, T. (ed.) The Oxford Companion to Philosophy. New Edition, Oxford UK: Oxford University Press, 2005.

Hungerford, T. W., Algebra, New York: Springer-Verlag, 1974.

Kneale, W., and M. Kneale, The Development of Logic, Oxford: Oxford University Press, 1962.

Lawvere, F.W., “Adjointness in foundations”, Dialectica, 23, 3–4 (1969): 281–295. DOI: 10.1111/j.1746-8361.1969.tb01194.x

Lawvere, F.W., and S. Schanuel, Conceptual Mathematics: A First Introduction to Categories, New York: Cambridge University Press, 1997. DOI: 10.1017/CBO9780511804199

Mac Lane, S., “Groups, categories, and duality”, Proc. Nat. Acad. Sci. U.S.A., 34, 6 (1948): 263–267.

Mac Lane, S., Categories for the Working Mathematician. New York: Springer-Verlag, 1971. DOI: 10.1007/978-1-4757-4721-8

Mac Lane, S., and G. Birkhoff, Algebra (First Edition), New York: Macmillan, 1967.

Makkai, M., “Structuralism in Mathematics”, pages 43–66 in R. Jackendoff, P. Bloom, and K. Wynn (eds.), Language, Logic, and Concepts: Essays in Memory of John Macnamara, Cambridge: MIT Press (A Bradford Book), 1999.

Magnan, F., and G.E. Reyes, “Category theory as a conceptual tool in the study of cognition”, pages 57–90 in J. Macnamara and G.E. Reyes (eds.), The Logical Foundations of Cognition, New York: Oxford University Press, 1994.

Malcolm, J., Plato on the Self-Predication of Forms, Oxford: Clarendon Press, 1991. DOI: 10.1093/acprof:oso/9780198239062.001.0001

Marquis, J.-P., “Three kinds of universals in mathematics”, pages 191–212 in B. Brown and J. Woods (eds.), Logical Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic, Mathematics and Science, Vol. II, Oxford: Hermes, 2000.

Miles, M.R., The Word Made Flesh: A History of Christian Thought, Malden MA: Blackwell, 2005.

Nehamas, A., “Self-predication and Plato’s theory of forms”, American Philosophical Quarterly, 16, 2 (1979): 93–103.

Quine, W.V.O., On Frege’s Way Out”, Mind, 64, 254 (1955): 145–159. DOI: 10.1093/mind/LXIV.254.145

Quine, W.V.O., Mathematical Logic, Cambridge, MA: Harvard University Press, 1955.

Russell, B., Principles of Mathematics, London: Routledge Classics, 2010 (1903).

Samuel, P., “On universal mappings and free topological groups”, Bull. Am. Math. Soc., 54, 6 (1948): 591–598. DOI: 10.1090/S0002-9904-1948-09052-8

Sayre, K., Metaphysics and Method in Plato’s Statesman, New York: Cambridge University Press, 2006.

Shoenfield, J., Mathematical Logic, Reading MA: Addison-Wesley, 1967.

Stern, R., “Hegel, British idealism, and the curious case of the concrete universal”, British Journal for the History of Philosophy, 15, 1 (2007): 115–153. DOI: 10.1080/09608780601088002

Vlastos, G., . Platonic Studies, Princeton NJ: Princeton University Press, 1981.

Vlastos, G., Studies in Greek Philosophy. Volume II: Socrates, Plato, and Their Tradition, edited by D.W. Graham, Princeton NJ: Princeton University Press, 1995.

Vlastos, G. (ed.) Plato: A Collection of Critical Essays I: Metaphysics and Epistemology, Notre Dame: University of Notre Dame Press, 1978. DOI: 10.1007/978-1-349-86203-0

Whitehead, A.N., and B. Russell, Principia Mathematica to *56, Cambridge UK: Cambridge University Press, 1997 (1910).

Wimsatt Jr., W.K., “The structure of the ‘concrete universal’ in literature”, PMLA, 62 (1947): 262–280.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2016-08-05

How to Cite

1.
ELLERMAN, David. Category Theory and Set Theory as Theories about Complementary Types of Universals. Logic and Logical Philosophy [online]. 5 August 2016, T. 26, nr 2, s. 145–162. [accessed 28.3.2023]. DOI 10.12775/LLP.2016.022.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 26 No. 2 (2017): June

Section

Articles

Stats

Number of views and downloads: 247
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

universals, category theory, Plato’s Theory of Forms, set theoretic antinomies, universal mapping properties
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop