Paraconsistency and Sette’s calculus P1
DOI:
https://doi.org/10.12775/LLP.2015.003Keywords
logic, Sette’s system, P1Abstract
In 1973, Sette presented a calculus, called P1, which is recognized as one of the most remarkable paraconsistent systems. The aim of this paper is to propose a new axiomatization of P1. The axiom schemata are chosen to show that P1 behaves in a paraconsistent way only at the atomic level, i.e. the rule: α, ~α / β holds in P1 only if α is not a propositional variable.
References
Carnielli, W., M.E.Coniglio, and J. Marcos, “Logics of formal inconsistency”, pages 1–95 in D.M. Gabbay and F. Guenthner (eds.) Handbook of Philosophical Logic, vol. 14, Springer, 2007. DOI: 10.1007/978-1-4020-6324-4_1
da Costa, N.C.A., “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic, 15, 4 (1974): 497–510. DOI: 10.1305/ndjfl/1093891487
Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy, 7, 1 (1999): 35–56. DOI: 10.12775/LLP.1999.003
Karpenko, A., “Jaśkowski’s criterion and three-valued paraconsistent logics”, Logic and Logical Philosophy, 7, 1 (1999): 81–86. DOI: 10.12775/LLP.1999.006
Malinowski, G., Many-Valued Logics, Clarendon Press, Oxford, 1993.
Pynko, A.P., “Algebraic study of Sette’s maximal paraconsistent logis”, Studia Logica, 54, 1 (1995): 89–128.
Sette, A.M., “On the propositional calculus P1”, Mathematica Japonicae, 18, 3 (1973): 173–180.
Sette, A.M., and E.H. Alves “On the equivalence between some systems of non-classical logic”, Bul letin of the Section of Logic, 25, 2 (1973): 68–72.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 662
Number of citations: 11