Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Why topology in the minimalist foundation must be pointfree
  • Home
  • /
  • Why topology in the minimalist foundation must be pointfree
  1. Home /
  2. Archives /
  3. Vol. 22 No. 2 (2013): June /
  4. Articles

Why topology in the minimalist foundation must be pointfree

Authors

  • Maria Emilia Maietti Università di Padova
  • Giovanni Sambin Università di Padova

DOI:

https://doi.org/10.12775/LLP.2013.010

Keywords

pointfree topology, real numbers, choice sequences’ Bar Induction, constructive type theory, axiom of unique choice, minimalist foundation

Abstract

We give arguments explaining why, when adopting a minimalist approach to constructive mathematics as that formalized in our two-level minimalist foundation, the choice for a pointfree approach to topology is not just a matter of convenience or mathematical elegance, but becomes compulsory. The main reason is that in our foundation real numbers, either as Dedekind cuts or as Cauchy sequences, do not form a set.

Author Biographies

Maria Emilia Maietti, Università di Padova

Dipartimento di Matematica

Giovanni Sambin, Università di Padova

Dipartimento di Matematica

References

Aczel, P., “The type theoretic interpretation of constructive set theory”, in Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977), vol. 96 of Stud. Logic Foundations Math., North-Holland, Amsterdam – New York, 1978.

Aczel, P., “The type theoretic interpretation of constructive set theory: choice principles”, in D. van Dalen and A. Troelstra (ed.), The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), vol. 110 of “Stud. Logic Foundations Math.”, North-Holland, Amsterdam – New York, 1982.

Aczel, P., “The type theoretic interpretation of constructive set theory: inductive definitions”, in Logic, Methodology and Philosophy of Science, VII (Salzburg, 1983), vol. 114 of “Stud. Logic Foundations Math.”, North-Holland, Amsterdam – New York, 1986.

Allen, S.F., M. Bickford, R.L. Constable, R. Eaton, C. Kreitz, L. Lorigo, and E. Moran, “Innovations in Computational Type Theory using Nuprl”, Journal of Applied Logic, 4 (2006), 4: 428–469.

Asperti, A., W. Ricciotti, C. Sacerdoti Coen, and E. Tassi, “The Matita interactive theorem prover”, in Proceedings of the 23rd International Conference on Automated Deduction (CADE-2011), Wrocław, Poland, vol. 6803 of “LNCS”, 2011.

Barthes, G., V. Capretta, and O. Pons, “Setoids in type theory”, J. Funct. Programming, 13 (2003), 2: 261–293. Special issue on “Logical frameworks and metalanguages”.

Battilotti, G., and G. Sambin, “Pretopologies and a uniform presentation of sup-lattices, quantales and frames”, Annals of Pure and Applied Logic, 137 (2006): 30–61. Special issue: “Papers presented at the 2nd Workshop on Formal Topology (2WFTop 2002)”.

Beeson, M., Foundations of Constructive Mathematics, Springer-Verlag, Berlin, 1985.

Bell, J. L., Toposes and Local Set Theories: An introduction, Claredon Press, Oxford, 1988.

Bishop, E., Foundations of Constructive Analysis, McGraw-Hill Book Co., 1967.

Bishop, E., and D. S. Bridges, Constructive analysis, Springer, 1985.

Bove, A., P. Dybjer, and U. Norell, “A brief overview of Agda – a functional language with dependent types”, in S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel (eds.), Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, vol. 5674 of “Lecture Notes in Computer Science”, Springer, 2009, pp. 73–78.

Bridges, D., “A reverse look at Brouwer’s Fan Theorem”, in One Hundred Years of Intuitionism (1907–2007), Birkäuser, 2008, pp. 316–325.

Bridges, D., and F. Richman, Varieties of constructive mathematics, vol. 97 of “London Mathematical Society Lecture Note Series”, Cambridge University Press, 1987.

Ciraulo, F., M. E. Maietti, and G. Sambin, “Convergence in formal topology: An unifying presentation”, Logic and Analysis, 5 (2013), 2: 1–45.

Coq development team, The Coq Proof Assistant Reference Manual: Release 8.3, INRIA, Orsay, France, 2010.

Coquand, T., “Metamathematical investigation of a calculus of constructions”, in P. Odifreddi (ed.), Logic in Computer Science, Academic Press, 1990, pp. 91–122.

Coquand, T., G. Sambin, J. Smith, and S. Valentini, “Inductively generated formal topologies”, Annals of Pure and Applied Logic, 124 (2003), 1–3: 71–106.

Coquand, Th., and C. Paulin-Mohring, “Inductively defined types”, in P. Martin-Löf, and G. Mints (eds.), Proceedings of the International Conference on Computer Logic (Colog ’88), vol. 417 of “Lecture Notes in Computer Science”, Springer, Berlin, Germany, 1990, pp. 50–66.

Curi, G., “On some peculiar aspects of the constructive theory of pointfree spaces”, Mathematical Logic Quarterly, 56 ((2010)), 4: 375–387.

Feferman, S., “Constructive theories of functions and classes”, in Logic Colloquium ’78 (Mons, 1978), Stud. Logic Foundations Math., North-Holland, Amsterdam – New York, 1979, pp. 159–224.

Fourman, M., and R.J. Grayson, “Formal spaces”, in The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), vol. 110 of Stud. Logic Foundations Math., North-Holland, 1982, pp. 107–122.

Gambino, N., and P. Schuster, “Spatiality for formal topologies”, Math. Structures Comput. Sci., 17 (2007), 1: 65–80.

Hofmann, M., Extensional Constructs in Intensional Type Theory, Distinguished Dissertations, Springer, 1997.

Hyland, J.M.E., “The effective topos”, in The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), vol. 110 of “Stud. Logic Foundations Math.”, North-Holland, Amsterdam – New York„ 1982, pp. 165–216.

Hyland, J.M.E., P.T. Johnstone, and A.M. Pitts, “Tripos theory”, Bull. Austral. Math. Soc., 88 (1980): 205–232.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2013-06-12

How to Cite

1.
MAIETTI, Maria Emilia & SAMBIN, Giovanni. Why topology in the minimalist foundation must be pointfree. Logic and Logical Philosophy [online]. 12 June 2013, T. 22, nr 2, s. 167–199. [accessed 28.5.2023]. DOI 10.12775/LLP.2013.010.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 22 No. 2 (2013): June

Section

Articles

Stats

Number of views and downloads: 182
Number of citations: 5

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

pointfree topology, real numbers, choice sequences’ Bar Induction, constructive type theory, axiom of unique choice, minimalist foundation
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop