Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Paranormal modal logic – Part I. The system K? and the foundations of the logic of skeptical and credulous plausibility
  • Home
  • /
  • Paranormal modal logic – Part I. The system K? and the foundations of the logic of skeptical and credulous plausibility
  1. Home /
  2. Archives /
  3. Vol. 21 No. 1 (2012): March /
  4. Articles

Paranormal modal logic – Part I. The system K? and the foundations of the logic of skeptical and credulous plausibility

Authors

  • Ricardo Sousa Silvestre Federal University of Campina Grande

DOI:

https://doi.org/10.12775/LLP.2012.005

Keywords

paraconsistent logic, paracomplete logic, modal logic, inductive plausibility

Abstract

In this two-parts paper we present paranormal modal logic: a modal logic which is both paraconsistent and paracomplete. Besides using a general framework in which a wide range of logics  including normal modal logics, paranormal modal logics and classical logic can be defined and proving some key theorems about paranormal modal logic (including that it is inferentially equivalent to classical normal modal logic), we also provide a philosophical justification for the view that paranormal modal logic is a formalization of the notions of skeptical and credulous plausibility.

References

Akker, J., and Y. Tan, “QML: a paraconsistent default logic”, Logique et Analyse 143–144 (1993): 311–328.

Batens, D., “On the remarkable correspondence between paraconsistent logics, modal logics and ambiguity logics”, pp. 445–454 in: W. Carnielli, M. Coniglio, I. d’Ottaviano (eds.), Paraconsistency: The Logical Way to the Inconsistency, Marcel Dekker, New York, 2002.

Béziau, J., “Paraconsistent logic from a modal viewpoint”, Journal of Applied Logic 3 (2005): 7–14.

Béziau, J., “S5 is a paraconsistent logic and so is first-order classical logic”, Logical Studies 9 (2002): 301–309.

Béziau, J., “The future of paraconsistent logic”, Logical Studies 2 (1999): 1–23.

Blackburn, P., and M. de Rijke, “Why combine logics?”, Studia Logica 59 (1997): 5–27.

Buchsbaum, A., T. Pequeno and M. Pequeno, “A logical expression of reasoning”, Synthese 154 (2007): 431–466.

Buchsbaum, A. and T. Pequeno, “A reasoning method for a paraconsistent logic”, Studia Logica 52 (1993): 281–289.

Carnap, R., Logical Foundations of Probability, University of Chicago Press, Chicago, 1950.

da Costa, N., and W. Carnielli, “On paraconsistent deontic logic”, Philosophia 16 (1986): 293–305.

da Costa, N., “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic 15 (1974): 497–510.

Fitting, M., “Basic modal logic”, pp. 368-448 in: D. Gabbay and D. Hogger, and J. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 1, “Logical Foundations”, Oxford University Press, Oxford, 1993.

Fuhrmann, A., “Models for relevant modal logics”, Studia Logica 49 (1990): 501–514.

Gabbay, D., and A. Hunter, “Making inconsistency respectable: A logical framework for inconsistency in reasoning”, pp. 19–32 in: P. Jorrand and 94 Ricardo S. Silvestre J. Kelemen (eds.), Foundations of Artificial Intelligence Research (LNCS 535), Springer-Verlag, New York, 1991.

Goble, L., “Paraconsistent modal logic”, Logique et Analyse 193 (2006): 3–29.

Hempel, C., “Inductive inconsistencies”, Synthese 12 (1960), 439–69.

Hempel, C., “Studies in the logic of confirmation”, Mind 54 (1945): 1–26; 97–121.

Hughes, G., and M. Cresswell, A New Introduction to Modal Logic, Routledge, New York, 1996.

Israel, D., “What’s wrong with non-monotonic logic?”, pp. 99–101 in: Proceedings of the First Congress on Artificial Intelligence, Elsevier Science, 1980.

Jaśkowski, S., “Propositional calculus for contradictory deductive systems”, Studia Logica 24 (1969): 143–157.

Kyburg, H., Probability and the Logic of Rational Belief, Wesleyan Uni- versity Press, Middletown, 1961.

Loparíc, A., and N. da Costa, “Paraconsistency, paracompletenes and valuations”, Logique et Analyse 106 (1984): 119–131.

Loparíc, A., and L. Puga, “Two systems of deontic logic”, Bulletin of the Section of Logic 15 (1986): 137–144.

Makinson, D., “General patterns in nonmonotonic reasoning”, pp. 35–110 in: D. Gabbay, D. Hogger and J. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, “Nonmonotonic Reasoning and Uncertain Reasoning”, Oxford University Press, Oxford, 1994.

Marcos, J., “Nearly every normal modal logic is paranormal”, Logique et Analyse 48 (2005): 279–300.

Mares, E., and R. Meyer, “The semantics of R4”, Journal of Philosophical Logic 22 (1993): 95–110.

Martins, A., L. Martins and F. Morais, “Natural deduction and weak normalization for the paraconsistent logic of epistemic inconsistency”, pp. 355–382 in: J. Béziau, W. Carnielli and D. Gabbay (eds.), Handbook of Paraconsistency: Studies in Logic and Cognitive Systems, Elsevier/North-Holland, Amsterdam, 2007.

Martins, A., T. Pequeno and M. Pequeno, “A multiple worlds semantics to a paraconsistent nonmonotonic logic”, pp. 187–211 in: W. Carnielli, M. Coniglio and I. d’Ottaviano (eds.), Paraconsistency: The Logical Way to the Inconsistency, Marcel Dekker, New York, 2002.

Martins, A., and T. Pequeno, “Proof-theoretical considerations about the logic of epistemic inconsistency”, Logique et Analyse 143–144 (1996): 245–260.

McDermott, D., “Non-monotonic logic II”, Journal of the Association for Computing Machinery 29 (1982): 33–57.

Odintsov, S., and H. Wansing, “Constructive predicate logic and constructive modal logic. Formal duality versus semantical duality”, pp. 269–286 in: V. Hendricks (ed.), First-Order Logic Revisited, Logos Verlag, Berlin, 2004.

Pequeno, T.H.C., and A.R.V. Buchsbaum, “The logic of epistemic inconsistency;”, pp. 453–460 in: J. Allen, R.J. Brachman, E. Sandewall, H.J. Levesque, R. Reiter, R. Fikes (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of Second International Conference, San Mateo, Morgan Kaufmann Publishers Inc., 1991.

Perlis, D., “On the consistency of commonsense reasoning”, Computational Intelligence 2 (1986): 180–190.

Reiter, R., “A logic for default reasoning”, Artificial Intelligence 13 (1980): 81–132.

Rescher, N., and R. Manor, “On inference from inconsistent premises”, Theory and Decision 1 (1970): 179–217.

Seki, T., “A Sahlqvist theorem for relevant modal logic”, Studia Logica 73 (2003): 383–411.

Silvestre, R., “Paranormal modal logic – Part II: K?, K and classical logic and other paranormal modal systems.”, Logic and Logical Philosophy, 22 (2013), 89–130. DOI: LLP.2013.006

Silvestre, R.S., Induction and Plausibility. A Conceptual Analysis from the Standpoint of Nonmonotonicity, Paraconsistency and Modal Logic, Lambert Academic Publishing, Saarbrucken, 2010.

Silvestre, R., “Ambigüidades indutivas, paraconsistência, paracompletude e as duas abordagens da indução”, Manuscrito 30 (2007): 101–134.

Silvestre, R.S., “Modality, paraconsistency and paracompleteness”, pp. 449–467 in: G. Governatori, I. Hodkinson and Y. Venema (eds.), Advances in Modal Logic, vol. 6, Noosa, College Publications, 2006.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2012-03-15

How to Cite

1.
SILVESTRE, Ricardo Sousa. Paranormal modal logic – Part I. The system K? and the foundations of the logic of skeptical and credulous plausibility. Logic and Logical Philosophy. Online. 15 March 2012. Vol. 21, no. 1, p. 65–95. [Accessed 12 May 2025]. DOI 10.12775/LLP.2012.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 21 No. 1 (2012): March

Section

Articles

Stats

Number of views and downloads: 636
Number of citations: 2

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

paraconsistent logic, paracomplete logic, modal logic, inductive plausibility
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop