Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Admissibility of cut in congruent modal logics
  • Home
  • /
  • Admissibility of cut in congruent modal logics
  1. Home /
  2. Archives /
  3. Vol. 20 No. 3 (2011) /
  4. Articles

Admissibility of cut in congruent modal logics

Authors

  • Andrzej Indrzejczak University of Lódź

DOI:

https://doi.org/10.12775/LLP.2011.010

Keywords

modal logics, proof methods, sequent calculi, cut elimination

Abstract

We present a detailed proof of the admissibility of cut in sequent calculus for some congruent modal logics. The result was announced much earlier during the Trends in Logic Conference, Toruń 2006 and the proof for monotonic modal logics was provided already in Indrzejczak [5]. Also some tableau and natural deduction formalizations presented in Indrzejczak [6] and Indrzejczak [7] were based on this result but the proof itself was not published so far. In this paper we are going to fill this gap. The delay was partly due to the fact that the author from time to time was trying to improve the result and extend it to some additional logics by testing other methods of proving cut elimination. Unfortunately all these attempts failed and cut elimination holds only for these logics which were proved to satisfy this property already in 2005.

Author Biography

Andrzej Indrzejczak, University of Lódź

Department of Logic

References

Bull, R., and K. Segerberg, “Basic Modal Logic”, pages 1–88 in: D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol II, Reidel Publishing Company, Dordrecht 1984.

Chellas, B., Modal Logic, Cambridge University Press, Cambridge 1980.

Dragalin, A., Mathematical Intuitionism: Introduction to Proof Theory, American Mathematical Society, Providence, Rhode Island 1988.

Hansen, H.H., Monotonic Modal Logics, MA thesis, University of Amsterdamm 2003.

Indrzejczak, A., “Sequent calculi for monotonic modal logics”, Bulletin of the Section of logic 34, 3 (2005): 151–164.

Indrzejczak, A., “Labelled tableau calculi for weak modal logics”, Bulletin of the Section of logic 36, 3–4 (2007): 159–173.

Indrzejczak, A., Natural Deduction, Hybrid Systems and Modal Logics, Trends in Logic series, vol 30, Springer Verlag 2010.

Lavendhomme, R., and T. Lucas, “Sequent calculi and decision procedures for weak modal systems”, Studia Logica 65 (2000): 121–145.

Negri, S., and J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge 2001.

Segerberg, K., An Essay in Classical Modal Logic I-III, Filosofiska Studier no 13, Uppsala Universitet, Uppsala 1971.

Troelstra, A.S., and H. Schwichtenberg, Basic Proof Theory, Oxford University Press, Oxford 1996.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2011-11-30

How to Cite

1.
INDRZEJCZAK, Andrzej. Admissibility of cut in congruent modal logics. Logic and Logical Philosophy. Online. 30 November 2011. Vol. 20, no. 3, pp. 189-203. [Accessed 19 May 2025]. DOI 10.12775/LLP.2011.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 20 No. 3 (2011)

Section

Articles

Stats

Number of views and downloads: 519
Number of citations: 11

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

modal logics, proof methods, sequent calculi, cut elimination
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop