Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

First-order belief and paraconsistency
  • Home
  • /
  • First-order belief and paraconsistency
  1. Home /
  2. Archives /
  3. Vol. 18 No. 2 (2009) /
  4. Articles

First-order belief and paraconsistency

Authors

  • Srećko Kovač Institute of Philosophy, Zagreb

DOI:

https://doi.org/10.12775/LLP.2009.008

Keywords

appearance, belief, identity, labelled and signed tableau, object, paraconsistent, tableau suffix

Abstract

A first-order logic of belief with identity is proposed, primarily to give an account of possible de re contradictory beliefs, which sometimes occur as consequences of de dicto non-contradictory beliefs. A model has two separate, though interconnected domains: the domain of objects and the domain of appearances. The satisfaction of atomic formulas is defined by a particular S-accessibility relation between worlds. Identity is non-classical, and is conceived as an equivalence relation having the classical identity relation as a subset. A tableau system with labels, signs, and suffixes is defined, extending the basic language LQB by quasiformulas (to express the denotations of predicates). The proposed logical system is paraconsistent since φ ∧ ¬φ does not “explode” with arbitrary syntactic consequences.

References

Béziau, J.-Y., “Paraconsistent logic from a modal viewpoint”, Journal of Applied Logic 3 (2005): 7–14.

Béziau, J.-Y., “A new four-valued approach to modal logic”, http://www.lia.ufc.br/~locia/artigos/modal4.pdf, 200X.

Bloesch, A., “A tableau style proof system for two paraconsistent logics”, Notre Dame Journal of Formal Logic 34 (1993): 295–301.

Carnielli, W.A., “Systematization of finite many-valued logics through the method of tableaux”, Journal of Symbolic Logic 52 (1987): 473–493.

Carnielli, W.A., “On sequents and tableaux for many-valued logics”, The Journal of Non-Classical Logic 8 (1991): 59–78.

Fitting, M., Proof Methods for Modal and Intuitionistic Logics, D. Reidel, Dordrecht, Boston, Lancaster, 1983.

Fitting, M., First-Order Modal Logic, Kluwer, Dordrecht, Boston, London, 1999.

Fitting, M., “First-order intensional logic”, Annals of Pure and Applied Logic 127 (2004): 171–193.

Fitting, M., “FOIL axiomatized”, Studia Logica 84 (2006): 1–22.

Frege, G., “Über Sinn und Bedeutung”, pp. 40–65 in: Funktion, Begriff, Bedeutung, G. Patzig (Ed.), 6. ed. Vandenhoeck und Ruprecht, Göttingen, 1986.

Jaśkowski, S., “Propositional calculus for contradictory deductive systems”, Studia Logica 24 (1969): 143–157. In Polish 1948.

Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999), 35–56. A modified version of [11].

Jaśkowski, S., “On the discussive conjunction in the propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999): 57–59. In Polish 1949.

Kovač, S., “Contradictions, objects, and belief”, pp. 417–434 in: Perspectives on Universal Logic, J.-Y. Béziau and A. Costa-Leite (Eds.), Polimetrica, Monza – Milano, 2007.

Kracht, M., and O. Kutz, “The semantics of modal predicate logic II. Modal individuals revisited”, in: Intensionality, R. Kahle (Ed.), A K Peters, Wellesley, Ma., 2005.

Kutz, O., “New semantics for modal predicate logics”, in: Foundations of Formal Sciences II, B. Löwe et al. (Eds.), Kluwer, Dordrecht, Boston, London, 2003.

Ye, R., Belief, Names and Modes of Presentation: A First-Order Logic Formalization, PhD thesis, City University of New York, 1999.

Ye, R., and M. Fitting, M., “Belief, names, and modes of presentation”, pp. 389–408 in: Advances in Modal Logic, vol. 3., e.a. F. Wolter (Ed.), World Scientific, New Jersey, etc., 2002.

Béziau, J.-Y., “Paraconsistent logic from a modal viewpoint”, Journal of Applied Logic 3 (2005): 7–14.

Béziau, J.-Y., “A new four-valued approach to modal logic”, http://www.lia.ufc.br/~locia/artigos/modal4.pdf, 200X.

Bloesch, A., “A tableau style proof system for two paraconsistent logics”, Notre Dame Journal of Formal Logic 34 (1993): 295–301.

Carnielli, W.A., “Systematization of finite many-valued logics through the method of tableaux”, Journal of Symbolic Logic 52 (1987): 473–493.

Carnielli, W.A., “On sequents and tableaux for many-valued logics”, The Journal of Non-Classical Logic 8 (1991): 59–78.

Fitting, M., Proof Methods for Modal and Intuitionistic Logics, D. Reidel, Dordrecht, Boston, Lancaster, 1983.

Fitting, M., First-Order Modal Logic, Kluwer, Dordrecht, Boston, London, 1999.

Fitting, M., “First-order intensional logic”, Annals of Pure and Applied Logic 127 (2004): 171–193.

Fitting, M., “FOIL axiomatized”, Studia Logica 84 (2006): 1–22.

Frege, G., “Über Sinn und Bedeutung”, pp. 40–65 in: Funktion, Begriff, Bedeutung, G. Patzig (Ed.), 6. ed. Vandenhoeck und Ruprecht, Göttingen, 1986.

Jaśkowski, S., “Propositional calculus for contradictory deductive systems”, Studia Logica 24 (1969): 143–157. In Polish 1948.

Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999), 35–56. A modified version of [11].

Jaśkowski, S., “On the discussive conjunction in the propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999): 57–59. In Polish 1949.

Kovač, S., “Contradictions, objects, and belief”, pp. 417–434 in: Perspectives on Universal Logic, J.-Y. Béziau and A. Costa-Leite (Eds.), Polimetrica, Monza – Milano, 2007.

Kracht, M., and O. Kutz, “The semantics of modal predicate logic II. Modal individuals revisited”, in: Intensionality, R. Kahle (Ed.), A K Peters, Wellesley, Ma., 2005.

Kutz, O., “New semantics for modal predicate logics”, in: Foundations of Formal Sciences II, B. Löwe et al. (Eds.), Kluwer, Dordrecht, Boston, London, 2003.

Ye, R., Belief, Names and Modes of Presentation: A First-Order Logic Formalization, PhD thesis, City University of New York, 1999.

Ye, R., and M. Fitting, M., “Belief, names, and modes of presentation”, pp. 389–408 in: Advances in Modal Logic, vol. 3., e.a. F. Wolter (Ed.), World Scientific, New Jersey, etc., 2002.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2009-11-30

How to Cite

1.
KOVAČ, Srećko. First-order belief and paraconsistency. Logic and Logical Philosophy. Online. 30 November 2009. Vol. 18, no. 2, pp. 127-143. [Accessed 4 July 2025]. DOI 10.12775/LLP.2009.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 18 No. 2 (2009)

Section

Articles

Stats

Number of views and downloads: 376
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

appearance, belief, identity, labelled and signed tableau, object, paraconsistent, tableau suffix
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop