Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Temporal non-commutative logic: Expressing time, resource, order and hierarchy
  • Home
  • /
  • Temporal non-commutative logic: Expressing time, resource, order and hierarchy
  1. Home /
  2. Archives /
  3. Vol. 18 No. 2 (2009) /
  4. Articles

Temporal non-commutative logic: Expressing time, resource, order and hierarchy

Authors

  • Norihiro Kamide Waseda University

DOI:

https://doi.org/10.12775/LLP.2009.007

Keywords

Keywords, temporal non-commutative logic, cut-elimination, sequent calculus, completeness, decidability

Abstract

A first-order temporal non-commutative logic TN[l], which has no structural rules and has some l-bounded linear-time temporal operators, is introduced as a Gentzen-type sequent calculus. The logic TN[l] allows us to provide not only time-dependent, resource-sensitive, ordered, but also hierarchical reasoning. Decidability, cut-elimination and completeness (w.r.t. phase semantics) theorems are shown for TN[l]. An advantage of TN[l] is its decidability, because the standard first-order linear-time temporal logic is undecidable. A correspondence theorem between TN[l] and a resource indexed non-commutative logic RN[l] is also shown. This theorem is intended to state that “time” is regarded as a “resource”.

Author Biography

Norihiro Kamide, Waseda University

Waseda Institute for Advanced Study

References

Abrusci, V.M., “Non-commutative intuitionistic linear logic”, Ztschr. f. Math. Logik 36 (1990): 297–318.

Baratella, S., and A. Masini, “An approach to infinitary temporal proof theory”, Archive for Mathematical Logic 43, 8 (2004): 965–990.

Biere, A., A. Cimatti, E.M. Clarke, O. Strichman and Y. Zhu, “Bounded model checking”, Advances in Computers 58 (2003): 118–149.

Cerrito, S., M.C. Mayer and S. Prand, “First order linear temporal logic over finite time structures”, pp. 62–76 in: Proceedings of the 6th International Conference on Logic for Programming and Automated Reasoning (LPAR’99), Lecture Notes in Computer Science 1705, Springer-Verlag, Berlin, 1999.

Girard, J.-Y., “Linear logic”, Theoretical Computer Science 50 (1987): 1–102.

Hodkinson, I., F. Wolter and M. Zakharyaschev, “Decidable fragments of first-order temporal logics”, Annals of Pure and Applied Logic 106 (2000): 85–134.

Kamide, N., “Linear and affine logics with temporal, spatial and epistemic operators”, Theoretical Computer Science 353, 1–3 (2006): 165–207.

Kamide, N., “An equivalence between sequent calculi for linear-time temporal logic”, Bulletin of the Section of the Logic 35, 4 (2006): 187–194.

Kamide, N., “A uniform proof-theoretic foundation for abstract paraconsistent logic programming”, Journal of Functional and Logic Programming, 2007.

Kamide, N., “Linear exponentials as resource operators: A decidable first-order linear logic with bounded exponentials”, pp. 245–257 in: Proceedings of the 11th European Conference on Logics in Artificial Intelligence (JELIA2008), Lecture Notes in Artificial Intelligence 5293, 2008.

Kamide, N., “Embedding linear-time temporal logic into infinitary logic: Application to cut-elimination for multi-agent infinitary epistemic linear-time temporal logic”, pp. 57–76 in Proceedings of the 9th International Workshop on Computational Logic in Multi-agent Systems (CLIMA-9), Lecture Notes in Artificial Intelligence 5405, 2009.

Kawai, H., “Sequential calculus for a first order infinitary temporal logic”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 33 (1987): 423–432.

Komori, Y., “Predicate logics without the structure rules”, Studia Logica 45 (1986): 393–404.

Kröger, F., “LAR: a logic of algorithmic reasoning”, Acta Informatica 8 (1977): 243–266.

Lambek, J., “The mathematics of sentence structure”, The American Mathematical Monthly 65 (1958): 154–170.

Okada, M., “A uniform semantic proof for cut-elimination and completeness of various first and higher order logics”, Theoretical Computer Science 281 (2002): 471–498.

Pym, D.J., P.W. O’Hearn and H. Yang, “Possible worlds and resources: The semantics of BI”, Theoretical Computer Science 315, 1 (2004): 257–305.

Russell, S., and P. Norvig, Artificial intelligence: A modern approach (Second edition), Pearson Education, Inc., 2003.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2009-11-30

How to Cite

1.
KAMIDE, Norihiro. Temporal non-commutative logic: Expressing time, resource, order and hierarchy. Logic and Logical Philosophy. Online. 30 November 2009. Vol. 18, no. 2, pp. 97-126. [Accessed 20 May 2025]. DOI 10.12775/LLP.2009.007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 18 No. 2 (2009)

Section

Articles

Stats

Number of views and downloads: 581
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Keywords, temporal non-commutative logic, cut-elimination, sequent calculus, completeness, decidability
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop