Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

In what sense is Kantian principle of contradiction non-classical?
  • Home
  • /
  • In what sense is Kantian principle of contradiction non-classical?
  1. Home /
  2. Archives /
  3. Vol. 17 No. 3 (2008) /
  4. Articles

In what sense is Kantian principle of contradiction non-classical?

Authors

  • Srećko Kovač Institute of Philosophy, Zagreb

DOI:

https://doi.org/10.12775/LLP.2008.013

Keywords

Kant, paracompleteness, paraconsistency, principle of contradiction, square of oppositions, subject abstraction, labelled tableau

Abstract

On the ground of Kant’s reformulation of the principle of contradiction, a non-classical logic KC and its extension KC+ are constructed. In KC and KC+, ¬(φ ∧ ¬φ),φ → (¬φ → ψ), and φ ∨ ¬φ are not valid due to specific changes in the meaning of connectives and quantifiers, although there is the explosion of derivable consequences from {φ,¬φ} (the deduction theorem lacking). KC and KC+ are interpreted as fragments of an S5-based first-order modal logic M. The quantification in M is combined with a “subject abstraction” device, which excepts predicate letters from the scope of modal operators. Derivability is defined by an appropriate labeled tableau system rules. Informally, KC is mainly ontologically motivated (in contrast, for example, to Jaśkowski’s discussive logic), relativizing state of affairs with respect to conditions such as time.

References

Ciuciura, J., “On the da Costa, Dubikajtis and Kotas’ system of the discursive logic, D*2”, Logic and Logical Philosophy 14 (2005), 235–252.

Fitting, M., First-Order Modal Logic, Kluwer, Dordrecht, Boston, London, 1999.

Fitting, M., “FOIL axiomatized”, Studia Logica 84 (2006), 1–22.

Jaśkowski, S., “Propositional calculus for contradictory deductive systems”, Studia Logica 24 (1969), 143–157. In Polish 1948.

Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999), 35–56. A modified version of [4].

Jaśkowski, S., “On the discussive conjunction in the propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999), 57–59. In Polish 1949.

Kant, I., Gesammelte Schriften, vol. 1–, Königlich Preussische Akademie der Wissenschaften, Berlin, 1908–.

Kant, I., Critique of Pure Reason, St Martin’s Press, MacMillan, New York,Toronto, 1965. Transl. by N. Kemp Smith.

Kant, I., Prolegomena to Any Future Metaphysics, Open Court, Chicago, La Salle, 1997. Transl. by P. Carus.

Leibniz, G.W., Die Philosophischen Schriften, vol. 1–7, Olms, Hildesheim, New York, 1978.

Leibniz, G.W., “Nouveaux essais sur l’entendement humain”, in C.I. Gerhardt (ed.), Die Philosophischen Schriften, vol. 5. 1978.

Perzanowski, J., “Parainconsistency, or inconsistency tamed, investigated and exploited”, Logic and Logical Philosophy 9 (2001), 5–24.

Priest, G., Beyond the Limits of Thought, 2nd ed., Oxford University Press, Oxford, New York, 2002.

Priest, G., “Paraconsistent logic”, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 6, 2002, pp. 287–393.

Puga, L.Z., N.C.A. da Costa, and W.A. Carnielli, “Kantian and non-Kantian logics”, Logique et Analyse 31 (1988), 3–9.

Urchs, M., “On the role of adjunction in para(in)consistent logic”, in M. Coniglio, and I.L. D’Ottaviano (eds.), Paraconsistency: the Logical Way to the Inconsistent, (New York, Basel, 2002), W. Carnielli, Dekker, pp. 487–499.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2008-09-30

How to Cite

1.
KOVAČ, Srećko. In what sense is Kantian principle of contradiction non-classical?. Logic and Logical Philosophy. Online. 30 September 2008. Vol. 17, no. 3, pp. 251-274. [Accessed 1 July 2025]. DOI 10.12775/LLP.2008.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 17 No. 3 (2008)

Section

Articles

Stats

Number of views and downloads: 1073
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Kant, paracompleteness, paraconsistency, principle of contradiction, square of oppositions, subject abstraction, labelled tableau
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop