Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Natural deduction systems for some non-commutative logics
  • Home
  • /
  • Natural deduction systems for some non-commutative logics
  1. Home /
  2. Archives /
  3. Vol. 16 No. 2-3 (2007) /
  4. Articles

Natural deduction systems for some non-commutative logics

Authors

  • Norihiro Kamide Waseda Institute for Advanced Study, Tokyo
  • Motohiko Mouri Tokyo Denki University

DOI:

https://doi.org/10.12775/LLP.2007.005

Keywords

constructive sequential propositional logic (COSPL), full Lambek logic (FL), natural deduction, (strong) normalization

Abstract

Varieties of natural deduction systems are introduced for Wansing’s paraconsistent non-commutative substructural logic, called a constructive sequential propositional logic (COSPL), and its fragments. Normalization, strong normalization and Church-Rosser theorems are proved for these systems. These results include some new results on full Lambek logic (FL) and its fragments, because FL is a fragment of COSPL.

Author Biography

Motohiko Mouri, Tokyo Denki University

School of Science and Engineering

References

van Benthem, J., Language in action — categories, lambdas and dynamic logic, Elsevier Science Publishers, 1991.

Gabbay D.M., and Ruy. J.G.B. de Queiroz, “Extending the Curry-Howard interpretation to linear, relevant and other resource logics”, Journal of Symbolic Logic 57 (4), 1319–1365, 1992.

Hindley, J.R., “BCK-combinators and linear ?-term have types”, Theoretical Computer Science 64, 97–105, 1986.

Kamide, N., “Natural deduction systems for Nelson’s paraconsistent logic and its neighbors”, Journal of Applied Non-Classical Logics 15 (4), 405–435, 2005.

Mouri, M., A proof-theoretic study of non-classical logics — natural deduction systems for intuitionistic substructural logics and implemetation of proof assistant system. (in Japanese). Doctoral dissertation, Japan Advanced Institute of Science and Technology, 2002.

Negri, S., “A normalizing system of natural deduction for intuitionistic linear logic”, Archive for Mathematical Logic 41, 789–810, 2002.

Negri, S., “Varieties of linear calculi”, Journal of Philosophical Logic 31, 569–590, 2002.

Negri, S., and J. von Plato, “Sequent calculus in natural deduction style”, Journal of Symbolic Logic 66 (4), 1803–1816, 2001.

Nelson, D., Constructible falsity. Journal of Symbolic Logic 14, 16–26, 1949.

Polakow, J., and F. Pfenning, “Natural deduction for intuitionistic non-commutative linear logic”, Lecture Notes in Computer Science 1581, 295–309, 1999.

Priest, G., and R. Routley, “Introduction: paraconsistent logics”, Studia Logica 43, 3–16, 1982.

Tiede, H.-J., “Proof theory and formal grammars — applications of normalization”, in T. Raesch et al. (eds.), Foundations of the Formal Sciences II: Applications of Mathematical Logic in Philosophy and Linguistics, Kluwer Academic Publishers, 2003.

Wagner, G., “Logic programmingwith strong negation and inexact predicates”, Journal of Logic and Computation 1 (6), 835–859, 1991.

Wansing, H., “Formulas-as-types for a hierarchy of sublogics of intuitionistic propositional logic”, Lecture Notes in Artificial Intelligence 619, 125–145, 1990.

Wansing, H., The logic of information structures, Lecture Notes in Artificial Intelligence 681, 1993, 163 pages.

Watari, O., K. Nakatogawa, and T. Ueno, “Normalization theorems for sub-structural logics in Gentzen-style natural deduction (abstract)”, Bulletin of Symbolic Logic 6 (3), 390–391, 2000.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2007-08-25

How to Cite

1.
KAMIDE, Norihiro and MOURI, Motohiko. Natural deduction systems for some non-commutative logics. Logic and Logical Philosophy. Online. 25 August 2007. Vol. 16, no. 2-3, pp. 105-146. [Accessed 15 May 2025]. DOI 10.12775/LLP.2007.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 16 No. 2-3 (2007)

Section

Articles

Stats

Number of views and downloads: 718
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

constructive sequential propositional logic (COSPL), full Lambek logic (FL), natural deduction, (strong) normalization
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop