Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Construction of tableaux for classical logic: Tableaux as combinations of branches, branches as chains of sets
  • Home
  • /
  • Construction of tableaux for classical logic: Tableaux as combinations of branches, branches as chains of sets
  1. Home /
  2. Archives /
  3. Vol. 16 No. 1 (2007) /
  4. Articles

Construction of tableaux for classical logic: Tableaux as combinations of branches, branches as chains of sets

Authors

  • Tomasz Jarmużek Nicolaus Copernicus University, Toruń

DOI:

https://doi.org/10.12775/LLP.2007.004

Keywords

analytic tableaux, propositional logic, set-theoretical approach to a description of tableaux, branches as chains of sets of formulas, tableaux consequence relation, choice of branches, tableau combined with branches

Abstract

The paper is devoted to an approach to analytic tableaux for propositional logic, but can be successfully extended to other logics. The distinguishing features of the presented approach are:(i) a precise set-theoretical description of tableau method; (ii) a notion of tableau consequence relation is defined without help of a notion of tableau, in our universe of discourse the basic notion is a branch;(iii) we define a tableau as a finite set of some chosen branches which is enough to check; hence, in our approach a tableau is only a way of choosing a minimal set of closed branches;(iv) a choice of tableau can be arbitrary, it means that if one tableau starting with some set of premisses is closed in the defined sense, then every branch in the power set of the set of formulas, that starts with the same set, is closed.

Author Biography

Tomasz Jarmużek, Nicolaus Copernicus University, Toruń

Departament of Logic

References

Jarmużek, T., “Tableaux for non-classical propositional logic. General pattern of completeness and correctness” (in preparation).

Fitting, M., and R. Mendelson, First-Order Modal Logic. Kluwer Academic Publishers, Dordrecht/Boston/London, 1998.

Fitting, M., Intuitionistic Logic. Model Theory and Forcing. North-Holland Publishing Company, Amsterdam/London, 1969.

Girle, R., Modal Logics and Philosophy. McGill-Queen’s University Press, Montreal & Kingston, London, Ithaca, 2000.

Priest, G., An Introduction to Non-Classical Logic. Cambridge University Press, Cambridge, 2001.

Smullyan, R.M., First-Order Logic. Dover Publications, New York, 1995.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2007-07-25

How to Cite

1.
JARMUŻEK, Tomasz. Construction of tableaux for classical logic: Tableaux as combinations of branches, branches as chains of sets. Logic and Logical Philosophy. Online. 25 July 2007. Vol. 16, no. 1, pp. 85-101. [Accessed 23 May 2025]. DOI 10.12775/LLP.2007.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 16 No. 1 (2007)

Section

Articles

Stats

Number of views and downloads: 556
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

analytic tableaux, propositional logic, set-theoretical approach to a description of tableaux, branches as chains of sets of formulas, tableaux consequence relation, choice of branches, tableau combined with branches
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop