Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Modalities as interactions between the classical and the intuitionistic logics
  • Home
  • /
  • Modalities as interactions between the classical and the intuitionistic logics
  1. Home /
  2. Archives /
  3. Vol. 15 No. 3 (2006) /
  4. Articles

Modalities as interactions between the classical and the intuitionistic logics

Authors

  • Michał Walicki University of Bergen

DOI:

https://doi.org/10.12775/LLP.2006.012

Keywords

topological algebras, Boolean algebras, Heyting algebras, modal logics, intuitionistic logics

Abstract

We give an equivalent formulation of topological algebras, interpreting S4, as boolean algebras equipped with intuitionistic negation. The intuitionistic substructure—Heyting algebra—of such an algebra can be then seen as an “epistemic subuniverse”, and modalities arise from the interaction between the intuitionistic and classical negations or, we might perhaps say, between the epistemic and the ontological aspects: they are not relations between arbitrary alternatives but between intuitionistic substructures and one common world governed by the classical (propositional) logic. As an example of the generality of the obtained view, we apply it also to S5. We give a sound, complete and decidable sequent calculus, extending a classical system with the rules for handling the intuitionistic negation, in which one can prove all classical, intuitionistic and S4 valid sequents.

Author Biography

Michał Walicki, University of Bergen

Department of Informatics

References

P. Blackburn, M. de R?ke, and Yde Venema, Modal Logic. Cambridge University Press, 2001.

A. Horn, “Free s5 algebras”, NotreDame Journal of Formal Logic 29(1) (1978), 189–191.

B. Jónsson and A. Tarski, “Boolean algebras with operators I”, American J. Mathematics 73 (1951), 891–939.

H.M. MacNeille, “Partially ordered sets”, Transactions of the American Mathematical Society 42 (1937), 416–460.

J.C.C. McKinsey and A. Tarski, “The algebra of topology”, The Annals of Mathematics 45(1) (1944), 141–191.

J.C.C. McKinsey and A. Tarski, “On closed elements in closure algebras”, The Annals of Mathematics 47(1) (1946), 126–162.

H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. PWN, Warszawa, 1963.

A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory. Cambridge University Press, 2 edition, 2000.

S. Vickers, Topology via Logic. Cambridge University Press, 1989.

M. Walicki, “Modalities as interactions between the classical and the intuitionistic logics”, Technical Report 330, Department of Informatics, University of Bergen, 2006.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2007-03-15

How to Cite

1.
WALICKI, Michał. Modalities as interactions between the classical and the intuitionistic logics. Logic and Logical Philosophy. Online. 15 March 2007. Vol. 15, no. 3, pp. 193-215. [Accessed 1 July 2025]. DOI 10.12775/LLP.2006.012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 15 No. 3 (2006)

Section

Articles

Stats

Number of views and downloads: 489
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

topological algebras, Boolean algebras, Heyting algebras, modal logics, intuitionistic logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop