Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

“Reductio ad absurdum” and Łukasiewicz’s modalities
  • Home
  • /
  • “Reductio ad absurdum” and Łukasiewicz’s modalities
  1. Home /
  2. Archives /
  3. No. 11-12 (2003) /
  4. Articles

“Reductio ad absurdum” and Łukasiewicz’s modalities

Authors

  • Sergei P. Odintsov Sobolev Institute of Mathematics, Novosibirsk

DOI:

https://doi.org/10.12775/LLP.2003.008

Abstract

The present article contains part of results from my lecture delivered at II Flemish-Polish workshop on Ontological Foundation of Paraconsistency.

References

Batens, D., Paraconsistent extensional propositional logics’, Logique et Analyse 23 (1980), 195–234.

Batens, D., K. De Clercq, and N. Kurtonina, ‘Embedding and interpolation for some paralogics. The propositional case’, Rep. on Math. Logic 33 (1999), 29–44.

Bernays, P., ‘Review of [5] and [6]’, J. Symb. Logic 18 (1953), 266–268.

da Costa, N.C.A., ‘On the theory of inconsistent formal systems’, Notre Dame J. Form. Logic 15 (1974), 497–510. Bull. Sect. Logic 23, No. 2 (1994), 98–105.

Curry, H. B., ‘On the definition of negation by a fixed proposition in the inferential calculus’, J. Symb. Logic 17 (1952), 98–104.

Curry, H. B., ‘The system LD’, J. Symb. Logic 17 (1952), 35–42.

Curry, H. B., Foundations of mathematical logic, McGrow-Hill Book Company, New York, 1963.

Dosen, K., ‘Negative modal operators in intuitionistic logic’, Publ. Inst. Math., Nouv. Ser. 35(49), (1984), 15–20.

Dosen, K., ‘Negation as a modal operator’, Rep. Math. Logic 20 (1986), 15–28.

Dosen, K., ‘Negation in the light of modal logic’, in D. Gabbay, H. Wansing (eds.) What is Negation?, Kluwer, Dordrecht, 1999, 77–86.

Font, J.M. and P. Hajek, ‘ Łukasiewicz and modal logic’, Math. Preprint Ser., No. 278, Univ. de Barselona, 2000.

van Heijenoort, J., From Frege to Gödel. A source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, 1967.

Johansson, I., ‘Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus’, Compositio Mathematika 4 (1937), 119–136.

Karpenko, A. S., ‘Two three-valued isomorphs of classical propositional logic and their combinations’, in First World Congress on Paraconsistency, Abstracts, Ghent, 1997, 92–94.

Kolmogorov, A.N., ‘On the principle of excluded middle’, Matematicheskij sbornik 32 (1925), 646–667 [in Russian]. English translation [12], 414–437.

Łukasiewicz, J., ‘A system of modal logic’, The Journal of Computing Systems 1 (1953), 111–149. Reprinted in [18], 352–390.

Łukasiewicz, J., Aristotle’s syllogistic from the standpoint of modern formal logic, (2nd enlarged edition), Clarendon Press, Oxford, 1957.

Łukasiewicz, J., Selected works, edited by L. Borkowski, Stud. in Logic and the Found. of Math. North-Holland, Amsterdam, 1970.

Odintsov, S. P., ‘Maximal paraconsistent extension of Johansson logic’, Logique et analyse 161–162–163 (1998), 107–120.

Odintsov, S. P., Isomorphs of the logic of classical refutability and their generalizations, Proceedings of the seminar of logical center, Inst. of Philosophy of RAS, Moscow, 1998, 48–61.

Odintsov, S. P., ‘Logic of classical refutability and class of extensions of minimal logic’, Logic and Logical Philosophy 9 (2002), 91–107.

Odintsov, S. P., ‘Algebraic semantics and Kripke semantics for extensions of minimal logic’, Logicheskije issledovaninja, No.2, 1999 [in Russian].

Odintsov, S.P., ‘Negatively equivalent extensions of minimal logic and their logics of contradictions’, Logical investigations 7 (2000), 119–127.

Odintsov, S.P., ‘Representation of j-algebras and Segerberg’s logics’, Logique et analyse 165–166 (1999), 81–106.

Porte, J., ‘The -system and the L-system of modal logic’, Notre Dame J. formal Logic 20 (1979), 915–920.

Porte, J., ‘Lukasiewicz’s L-modal system and classical refutability’, Logique Anal. Now. Ser. 27 (1984), 87–92.

Priest, G., Paraconsistent logic. in: D.Gabbay, H.Guenter (eds.) Handbook of Philosophical Logic, second edition.

Pynko, A. P. ‘Algebraic study of Sette’s maximal paraconsistent logic’, Studia Logica 54 (1995), 89–128.

Rescher, N., Many-valued Logic, N.Y., 1969.

Sette, A.M., ‘On the propositional calculus P1’, Mathematica Japonicae 18, No. 3 (1973), 173–180.

Wojtylak, P., ‘Mutual interpretability of sentential logic I’, Rep. on Math. Logic 11 (1981), 69–89.

Wojtylak, P., ‘Mutual interpretability of sentential logic II’, Rep. on Math. Logic 12 (1981), 51–66.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2003-11-23

How to Cite

1.
ODINTSOV, Sergei P. “Reductio ad absurdum” and Łukasiewicz’s modalities. Logic and Logical Philosophy. Online. 23 November 2003. No. 11-12, pp. 149-166. [Accessed 3 July 2025]. DOI 10.12775/LLP.2003.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 11-12 (2003)

Section

Articles

Stats

Number of views and downloads: 686
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop