A deductive-reductive form of logic: General theory and intuitionistic case
DOI:
https://doi.org/10.12775/LLP.2002.004Abstract
The paper deals with reconstruction of the unique reductive counterpart of the deductive logic. The procedure results in the deductive-reductive form of logic. This extension is illustrated on the base of intuitionistic logics: Heyting’s, Brouwerian and Heyting-Brouwer’s ones.References
Łukowski, P., “A reductive approach to Ł-decidability”, Bulletin of the Section of Logic 28/3, 79–84 (1999).
Rauszer, C., “Semi-Boolean algebras and their applications to intuitionistic logic with dual operations”, Fundamenta Mathematicae LXXXIII, 219–249 (1974).
Rauszer, C., “An algebraic and Kripke-style approach to a certain extension of intuitionistic logic”, Dissertationes Mathematicae CLXVII, PWN Warszawa 1980.
Tarski, A., “Über einige fundamentale Begriffe der Metamathematik”, Compt. Rend. Séances Soc. Sci. Lett. Varsovie, cl. III, 23, pp. 22–29.
Wójcicki, R., “Dual counterparts of consequence operation”, Bulletin of the Section of Logic 2/1, 54–57 (1973).
Wójcicki, R., “Theory of logical calculi: basic theory of consequence operations”, Synthese Library vol. 199, Kluwer Academic Publishers 1988.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 269
Number of citations: 0