A comparison of two approaches to parainconsistency: Flemish and Polish
DOI:
https://doi.org/10.12775/LLP.2001.004Abstract
In this paper we present a comparison of certain inconsistency adaptive logics and Jaśkowski’s logic.References
Batens, D., “Dialectical dynamics within formal logics”, Logic et Analyse 114, (1986), 161–173.
Batens, D., “Dynamic dialectical logics”, in G. Priest, R. Routley and J. Norman (eds.), Paraconsistent Logic. Essays on the Inconsistent, Philosophia Verlag, München, pp. 187–217.
Batens, D., “Inconcistency adaptive logics”, in E. Orłowska (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, Physica Verlag (Springer), Heidelberg – New York, 1999, pp. 445–472.
Błaszczuk, J.J., W. Dziobiak: “Modal logics connected with systems S4 n of Sobociński”, Bulletin of the Section of Logic 4, 3 (1975), 103–108.
Chagrov, A., and M. Zakharyaschev, Modal Logic, Oxford Science Publications, Clarendon Press, Oxford, 1997.
Fine, K., “Normal forms in modal logic”, Notre Dame Journal of Formal Logic 16 (1975), 229–237.
Furmanowski, T., Remarks on Discussive Propositional Calculus, Routledge, New Your, London 1996.
Goldblatt, R., “First-orderdefinability in modal logic”, The Journal of Symbolic Logic 40 (1975), 35–40.
Goldblatt, R., “The KcKinsey Axiom is not canonical”, The Journal of Symbolic Logic 56 (1991), 554–562.
Hughes, G.E., and M.J. Cresswell: A New Introduction to Modal Logic, Routledge, New Your, London 1996.
Jaśkowski, S., “Rachunek zdań dla systemów dedukcyjnych sprzecznych”, Studia Societatis Scientiarum Torunensis, Sect. A, I, No 5 (1948), 57–77. In english: “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999), 35–56. DOI: http://dx.doi.org/10.12775/LLP.1999.003
Jaśkowski, S., “O koniunkcji dyskusyjnej w rachunku zdań dla systemów dedukcyjnych sprzecznych”, Studia Societatis Scientiarum Torunensis, Sect. A, I, No 8 (1949), 171–172. In english: “On the discussive conjunction in the propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999), 57–59. DOI: http://dx.doi.org/10.12775/LLP.1999.004
Lemmon, F.J., An Introduction to Modal Logic, American Philosophical Quarterly Monograph Series, vol. 11, Basil Balckwell, Qxford 1977.
Perzanowski, J., “On M-fragments and L-fragments of normal modal propositional logics”, Reports on Mathematical Logic 5 (1975), 63–72.
Wang, X.,: “The KcKinsey Axiom is not compact”, The Journal of Symbolic Logic 57 (1992), 1230–1238.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 724
Number of citations: 0