Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Paraconsistency and analyticity
  • Home
  • /
  • Paraconsistency and analyticity
  1. Home /
  2. Archives /
  3. No. 7 (1999) /
  4. Articles

Paraconsistency and analyticity

Authors

  • Carlos A. Oller Universidad de Buenos Aires

DOI:

https://doi.org/10.12775/LLP.1999.008

Abstract

William Parry conceived in the early thirties a theory of entailment, the theory of analytic implication, intended to give a formal expression to the idea that the content of the conclusion of a valid argument must be included in the content of its premises. This paper introduces a system of analytic, paraconsistent and quasi-classical propositional logic that does not validate the paradoxes of Parry’s analytic implication. The interpretation of the expressions of this logic will be given in terms of a four-valued semantics, and its proof theory will be provided by a system of signed semantic tableaux that incorporates the techniques developed to improve the efficiency of the tableaux method for many-valued logics.

Author Biography

Carlos A. Oller, Universidad de Buenos Aires

Facultad de Filosofia y Letras

References

A.R. Anderson, N.D. Belnap Jr., J.M. Dunn, Entailment. The Logic of Relevance and Necessity, vol. II, Princeton University Press, Princeton, 1992.

N.D. Belnap Jr., A Useful Four-valued Logic, in J.M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-valued Logic, Reidel, Dordrecht, pp. 8–37, 1977. A more recent version of this paper can be found in [1], pp. 506–541.

Ph. Besnard and A. Hunter, Quasi-classical logic. non-trivializable classical reasoning from inconsistent information, in C. Froidevaux and J. Kohlas (eds.), Symbolic and Quantitative Approaches to Uncertainty (ECSQARU’95), Springer, LNCS 946, Heidelberg, pp. 44–51, 1995.

A. Bloesch, Tableau Style Proof Systems for Many-Valued Logics, Technical Report No 94–18, Software Verification Research Centre, Department of Computer Science, The University of Queensland, Queensland (Aus.), 1994.

J.M. Dunn, A Modification of Parry’s Analytic Implication, Notre Dame Journal of Formal Logic, 13 (1972), pp. 195-205.

R.L. Epstein, The Semantic Foundations of Logic. Volume 1: Propositional Logics, Kluwer Academic Publishers, Dordrecht, 1990.

K. Fine, Analytic implication, Notre Dame Journal of Formal Logic, 27 (1986), pp. 169–179.

D. Gabbay and A. Hunter, Making Inconsistency Respectable 1: A Logical Framework for Inconsistency in Reasoning, in Ph. Jorrand and J. Kelemen (eds.), Fundamentals of Artificial Intelligence, Springer, LNCS 535, Heidelberg, pp. 19–32, 1991.

R. Hähnle, Towards an Efficient Tableau Proof Procedure for Multiple-Valued Logics, in Proceedings Workshop Computer Science, Springer, LNCS 533, Heidelberg, pp. 248–260, 1991.

J. Meheus, An extremely rich paraconsistent logic and the adaptive logic based on it, Universiteit Gent, Centre for Logic and Philosophy of Science, Preprint 65, Gent, 1998.

W.T. Parry, Ein Axiomensystem f¨ur eine neue Art von Implikation (analytische Implikation), Ergebnisse eines mathematischen Kolloquiums, 4 (1933), pp. 5–6.

W.T. Parry, Analytic Implication: Its History, Justification and Varieties, in J. Norman and R. Sylvan (eds.), Directions in Relevant Logic, Kluwer, Boston, pp. 101–118, 1989.

R. Smullyan, First-Order Logic, Springer, New York, 1968.

Downloads

  • PDF

Published

2004-01-07

How to Cite

1.
OLLER, Carlos A. Paraconsistency and analyticity. Logic and Logical Philosophy. Online. 7 January 2004. Vol. 7, no. 7, pp. 91-99. [Accessed 4 July 2025]. DOI 10.12775/LLP.1999.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 7 (1999)

Section

Articles

Stats

Number of views and downloads: 643
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop