Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

The algebraic face of minimality
  • Home
  • /
  • The algebraic face of minimality
  1. Home /
  2. Archives /
  3. No. 6 (1998) /
  4. Articles

The algebraic face of minimality

Authors

  • Frank Wolter Universität Leipzig

DOI:

https://doi.org/10.12775/LLP.1998.013

Abstract

Operators which map subsets of a given set to the set of their minimal elements with respect to some relation R form the basis of a semantic approach in non-monotonic logic, belief revision, conditional logic and updating. In this paper we investigate operators of this type from an algebraic viewpoint. A representation theorem is proved and various properties of the resulting algebras are investigated. It is shown that they behave quite differently from known algebras related to logics, e.g. modal algebras and Heyting algebras.

Author Biography

Frank Wolter, Universität Leipzig

Institut für Informatik

References

Blok, W., “Varieties of interior algebras”, Dissertation, University of Amsterdam, 1976.

Blok, W., D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, vol. 77, AMS, 1989.

Blok,W., D. Pigozzi, “On the structure of varieties with equationally definable principal congruences”, Algebra Universalis 15 (1982): 195–227.

Chagrov, A. V., M. V. Zakharyaschev, Modal Logic, Oxford University Press, 1997.

Chang, C., H. Keisler, Model Theory, Amsterdam, 1973.

Fine, K., “Logics containing K4. Part II”, Journal of Symbolic Logic 50 (1985): 619–651.

Goldblatt, R., “Metamathematics of modal logic”, Reports on Mathematical Logic 6 (1976): 41–78, 7 (1976): 21–52.

Koppelberg, S., Handbook of Boolean Algebras, vol. 1, North-Holland, 1989.

Kracht, M., “An almost general splitting theorem for modal logic”, Studia Logica 49 (1990): 455–470.

Kraus, Lehmann and Magidor, “Nonmonotonic reasoning, preferential models and cumulative logics”, Artificial Intelligence 44 (1990): 167–207.

Henkin, Monk and Tarski, Cylindric Algebras. Part 1, Amsterdam, 1971.

Makinson, D., “Five faces of minimality”, Studia Logica 52 (1993): 339–379.

McKenzie R., “Equational bases and non-modular lattice varieties”, Transactions of the American Mathematical Society 174 (1972): 1–43.

Wolter, F., “The structure of lattices of subframe logics”, Annals of Pure and Applied Logic 86 (1977): 47–100.

Downloads

  • PDF

Published

1998-11-06

How to Cite

1.
WOLTER, Frank. The algebraic face of minimality. Logic and Logical Philosophy [online]. 6 November 1998, T. 6, nr 6, s. 225–240. [accessed 29.1.2023]. DOI 10.12775/LLP.1998.013.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 6 (1998)

Section

Articles

Stats

Number of views and downloads: 143
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Newsletter
Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Karpacka Uczelnia Państwowa w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop