Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Theorem proving with built-in hybrid theories
  • Home
  • /
  • Theorem proving with built-in hybrid theories
  1. Home /
  2. Archives /
  3. No. 6 (1998) /
  4. Articles

Theorem proving with built-in hybrid theories

Authors

  • Uwe Petermann Leipzig University of Applied Sciences

DOI:

https://doi.org/10.12775/LLP.1998.005

Abstract

A growing number of applications of automated reasoning exhibits the necessity of flexible deduction systems. A deduction system should be able to execute inference rules which are appropriate to the given problem. One way to achieve this behavior is the integration of different calculi. This led to so called hybrid reasoning [22, 1, 10, 20] which means the integration of a general purpose foreground reasoner with a specialized background reasoner. A typical task of a background reasoner is to perform special purpose inference rules according to a built-in theory. The aim of this paper is to go a step further, i.e. to treat the background reasoner as a hybrid system itself. The paper formulates sufficient criteria for the construction of complete calculi which enable reasoning under hybrid theories combined from sub-theories. For this purpose we use a generic approach described in [20]. This more detailed view on built-in theories is not covered by the known general approaches [1, 3, 6, 20] for building in theories into theorem provers. The approach is demonstrated by its application to the target calculi of the algebraic translation [9] of multi-modal and extended multi-modal [7] logic to first-order logic.

Author Biography

Uwe Petermann, Leipzig University of Applied Sciences

Dept. of Computer Sciences

References

Baumgartner, P., “Theory Model Elimination”, in H. J. Ohlbach (ed.), Proc. GWAI 92, 1992, MP-I-Inf.

Baumgartner, P., Theory Reasoning in Connection Calculi and the Linearizing Completion Approach, PhD thesis, Universität Koblenz-Landau, 1996.

Baumgartner, P., and F. Stolzenburg, “Constraint model elimination and a pttp-implementation”, in Proceedings Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Lecture Notes in Artificial Intelligence, 201–216, Springer, 1995.

Bibel, W., Automated Theorem Proving, Vieweg Verlag, Braunschweig, 1982.

Boyreau, Un atelier de demonstration automatique multilogique. Application a la logique modale et l’unification associativee. PhD thesis, Université de Caen, 1994.

Bürckert, H.-J., “A resolution principle for constrained logics”, Artificial Intelligence 66:235–271, 1994.

Clerin-Debart, F., Th´eories ´equationelles et de contraintes pour la d´emonstration automatique en logique multi-modale, PhD thesis, Laboratoire d’Informatique, Université de Caen, France, Jan. 1992.

Debart, F., and P. Enjalbert, “A case of termination for associative unification”, in J. P. H. Abdulrab (ed.), Words Equtions and related Topics: Second International Workshop IWWERT ’91, Berlin, 1992, Springer-Verlag.

Debart, F., P. Enjalbert, and M. Lescot. “Multi Modal Logic Programming Using Equational and Order-Sorted Logic”, in M. Okada and S. Kaplan, editors, Proc. 2nd Conf. on Conditional and Typed Rewriting Systems, Springer, 1990, LNCS.

Frisch, A. M., ‘The Substitutional Framework for Sorted Deduction: Fundamental Results on Hybrid Reasoning”, Artificial Intelligence, 1991.

Frisch, A. M., and R. B. Scherl, “A General Framework for Modal Deduction”, in Principles of Knowledge Representation and Reasoning, Proceedings of KR’91, 1991.

Genesereth, M., and N. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kauffman, Los Altos, California, 1987.

Kripke, S., “Semantical analysis of modal logic I. Normal propositional calculi”, Zeitschrift f¨ur mathematische Logik und Grundlagen der Mathematik 9:67–96, 1963.

Loveland, D., Automated Theorem Proving – A Logical Basis, North Holland, 1978.

Miller, D. A., Proofs in Higher-Order Logic, PhD thesis, Carnegie Mellon University, Pittsburg Pa., 1983.

Neugebauer, G., and U. Petermann, “Specifications of inference rules and their automatic translation”, in Proceedings Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Lecture Notes in Artificial Intelligence, p. 185–200, Springer, 1995.

Neugebauer, G., and T. Schaub, “A pool-based connection calculus”, in C. Bozsahin, U. Halıcı, K. Oflazar, and N. Yalabık (eds.), Proceedings of Third Turkish Symposium on Artificial Intelligence and Neural Networks, p. 297–306, Middle East Technical University Press, 1994.

Ohlbach, H. J., and R. Schmidt, “Functional translation and second-order frame properties of modal logic”, Research Report MPI-I-95-2-002, Max-Planck-Institut für Informatik, Im Stadtwald D 66123 Saarbrücken, jan 1995.

Petermann, U., “How to Build-in an Open Theory into Connection Calculi”, Journal on Computer and Artificial Intelligence 11(2):105–142, 1992.

Petermann, U., “Completeness of the pool calculus with an open built in theory”, in G. Gottlob, A. Leitsch, and D. Mundici (eds.), 3rd Kurt Gödel Colloquium ’93, volume 713 of Lecture Notes in Computer Science, Springer-Verlag, 1993.

Rigó, Z., “Untersuchungen zum automatischen Beweisen in Modallogiken”, Master’s thesis, Universität Leipzig, 1995.

Stickel, M., “Automated deduction by theory resolution”, J. of Automated Reasoning, 4(1):333–356, 1985.

Downloads

  • PDF

Published

1998-11-06

How to Cite

1.
PETERMANN, Uwe. Theorem proving with built-in hybrid theories. Logic and Logical Philosophy. Online. 6 November 1998. Vol. 6, no. 6, pp. 77-107. [Accessed 5 July 2025]. DOI 10.12775/LLP.1998.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 6 (1998)

Section

Articles

Stats

Number of views and downloads: 451
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop