Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Incompleteness, constructivism and truth
  • Home
  • /
  • Incompleteness, constructivism and truth
  1. Home /
  2. Archives /
  3. No. 6 (1998) /
  4. Articles

Incompleteness, constructivism and truth

Authors

  • Fabrice Pataut C.N.R.S., Université de Paris 1

DOI:

https://doi.org/10.12775/LLP.1998.004

Abstract

Although Gödel proved the first incompleteness theorem by intuitionistically respectable means, Gödel’s formula, true although undecidable, seems to offer a counter-example to the general constructivist or anti-realist claim that truth may not transcend recognizability in principle. It is argued here that our understanding of the formula consists in a knowledge of its truth-conditions, that it is true in a minimal sense (in virtue of a reduction ad absurdum) and, finally, that it is recognized as such given the consistency and !-consistency of P. The philosophical lesson to be drawn from Gödel’s proof is that our capacities for justification in favour of minimal truth exceed what is strictly speaking formally provable in P by means of an algorithm.

Author Biography

Fabrice Pataut, C.N.R.S., Université de Paris 1

Institut d’Histoire et Philosophie des Sciences et des Techniques

References

Boolos, G. , 1989, “A new proof of the Gödel incompleteness theorem”, Notices of the American Mathematical Society, vol. 36, n◦ 4, p. 388–390.

Brouwer, L.E.J., [1948] 1983, “Consciousness, philosophy and mathematics”, in Philosophy of Mathematics – Selected Readings, P. Benacerraf and H. Putnam (eds.), Cambridge U. P., 2nd edition, p. 90–96.

Dubucs, J., 1991, “La philosophie de Kurt Gödel [Compte rendu de lecture de Reflections on Kurt Gödel de Hao Wang]”, Philosophie de la logique et philosophie du langage I, L’Age de la Science – Lectures Philosophiques, vol. 4, ed., J. Bouveresse, Odile Jacob, Paris, p. 53–68.

Dummett, M.,A.E., 1978, Truth and Other Enigmas, Harvard U. P., Cambridge, Mass.

Glivenko, V. I., 1929, “Sur quelques points de la logique de M. Brouwer”, Académie royale de Belgique, Bulletin de la classe des sciences (5), 15, p. 183–188.

Gödel, K., [1931] 1986a, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I” / “On formally undecidable propositions of Principia Mathematica and related systems I”, Collected Works, vol. I: Publications 1929–1936, S. Feferman, ed.-in-chief, Oxford U. P., Oxford, trans. By J. van Heijenoort, p. [173–198] 144–195.

Gödel, K., [1933] 1986b, “Zur intuitionistischen Arithmetic und Zahlentheorie” / “On intuitionistic arithmetic and number theory”, Collected Works, vol. I: Publications 1929–1936, S. Feferman, ed.-in-chief, Oxford U.P., Oxford, trans. by S. Bauer-Mengelberg and J. van Heijenoort, p. [34–38] 287–295.

Gödel, K., [1934] 1986c, “On undecidable propositions of formal mathematical systems”, Collected Works, vol. I: Publications 1929–1936, S. Feferman, ed.-in-chief, Oxford U. P., Oxford, p. [1–27] 346–371.

Gödel, K., [1941] 1995, “In what sense is intuitionistic logic constructive?”, Collected Works, vol. III: Unpublished Essays and Lectures, S. Feferman, ed.-in-chief, Oxford U. P., Oxford, p. [1–30] 189–200.

Horwich, P., 1990, Truth, Basil Blackwell, Oxford.

Kleene, S. C., 1986, “Introductory note to 1930b, 1931 and 1932b”, Kurt Gödel: Collected Works, vol. I: Publications 1929–1936, S. Feferman, ed.-in-chief, Oxford U. P., Oxford, p. 126–141.

Shanker, S. G., 1989, “Wittgenstein’s remarks on the significance of Gödel’s theorem”, in Gödel’s Theorem in Focus, S. G. Shanker (ed.), Routledge and Kegan Paul, London and New York, p. 155–256.

Downloads

  • PDF

Published

1998-11-06

How to Cite

1.
PATAUT, Fabrice. Incompleteness, constructivism and truth. Logic and Logical Philosophy. Online. 6 November 1998. Vol. 6, no. 6, pp. 63-76. [Accessed 18 November 2025]. DOI 10.12775/LLP.1998.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 6 (1998)

Section

Articles

Stats

Number of views and downloads: 938
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop