Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Existence, the square of opposites, and two-dimensional logic
  • Home
  • /
  • Existence, the square of opposites, and two-dimensional logic
  1. Home /
  2. Archives /
  3. No. 2 (1994) /
  4. Articles

Existence, the square of opposites, and two-dimensional logic

Authors

  • Ingolf Max Friedrich-Schiller-University, Jena

DOI:

https://doi.org/10.12775/LLP.1994.009

Abstract

Ontological commitments and other problems concerning existence arise in connection with various aspects of logical theories. The semantics of quantification theory is usually formulated in such a manner that theorems are all and only those formulae which come out true under all interpretations in all non-empty domains. There are several approaches to include the empty domain. Paradoxically this apparent semantic extension means surrendering several formulae which are valid and intuitively plausible.

Author Biography

Ingolf Max, Friedrich-Schiller-University, Jena

Department of Philosophy

References

Frege G., “Über Sinn und Bedeutung”, Zeitschrift für Philosophie und philosophische Kritik, NF 100 (1892), 25–50.

Hailperin T., “Quantification theory and empty individual domains”, The Journal of Symbolic Logic 18 (1953), 197–200.

Leblanc H., Meyer R. K., “Open formulas and the empty domain”, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12 (1969), 78–84.

Leonard H. S., “The logic of existence”, Philosophical Studies 7 (1956), 49–64.

Max I., “Zur Explikation der Modaloperatoren von S5 mittels G-Funktorenvariablen”, [in:] Logik in der Semantik – Semantik in der Logik, ed. E. Dölling, Berlin 1987, 123–133.

Mostowski A., “On the rules of proof in the pure functional calculus of the first order”, The Journal of Symbolic Logic 16 (1951), 107–111.

Quine W. V. O., “Quantification and the empty domain”, The Journal of Symbolic Logic 19 (1954), 177–179.

Strawson P. F., Introduction to Logical Theory, London 1952.

Downloads

  • PDF

Published

2003-01-07

How to Cite

1.
MAX, Ingolf. Existence, the square of opposites, and two-dimensional logic. Logic and Logical Philosophy [online]. 7 January 2003, nr 2, s. 135–149. [accessed 27.3.2023]. DOI 10.12775/LLP.1994.009.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 2 (1994)

Section

Articles

Stats

Number of views and downloads: 196
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop