Existence, the square of opposites, and two-dimensional logic
DOI:
https://doi.org/10.12775/LLP.1994.009Abstract
Ontological commitments and other problems concerning existence arise in connection with various aspects of logical theories. The semantics of quantification theory is usually formulated in such a manner that theorems are all and only those formulae which come out true under all interpretations in all non-empty domains. There are several approaches to include the empty domain. Paradoxically this apparent semantic extension means surrendering several formulae which are valid and intuitively plausible.References
Frege G., “Über Sinn und Bedeutung”, Zeitschrift für Philosophie und philosophische Kritik, NF 100 (1892), 25–50.
Hailperin T., “Quantification theory and empty individual domains”, The Journal of Symbolic Logic 18 (1953), 197–200.
Leblanc H., Meyer R. K., “Open formulas and the empty domain”, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12 (1969), 78–84.
Leonard H. S., “The logic of existence”, Philosophical Studies 7 (1956), 49–64.
Max I., “Zur Explikation der Modaloperatoren von S5 mittels G-Funktorenvariablen”, [in:] Logik in der Semantik – Semantik in der Logik, ed. E. Dölling, Berlin 1987, 123–133.
Mostowski A., “On the rules of proof in the pure functional calculus of the first order”, The Journal of Symbolic Logic 16 (1951), 107–111.
Quine W. V. O., “Quantification and the empty domain”, The Journal of Symbolic Logic 19 (1954), 177–179.
Strawson P. F., Introduction to Logical Theory, London 1952.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 196
Number of citations: 0