Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Two Semantics for Zalta’s Object Theory
  • Home
  • /
  • Two Semantics for Zalta’s Object Theory
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Two Semantics for Zalta’s Object Theory

Authors

  • Bartłomiej Uzar Department of Philosophy, Cardinal Stefan Wyszyński University in Warsaw https://orcid.org/0000-0002-2240-1310

DOI:

https://doi.org/10.12775/LLP.2026.002

Keywords

object theory, abstract objects, formalized ontology, Edward Zalta

Abstract

This paper investigates the relationship between two semantics for Edward Zalta’s Elementary Object Theory (OT): one proposed by Dana Scott and the other by Peter Aczel. We present some philosophical motivations underlying OT, characterize its second-order monadic fragment (MOT), and prove some of its theses. We define Scott and Aczel structures and establish a soundness theorem for MOT with respect to the latter. We indicate a class of Aczel structures in which a given formula is true iff it is true in all Scott structures. We also investigate two formulas: one concerning the extensionality of the identity of properties and another related to the overloading of extensions containing abstracta, meaning that if one abstract object exemplifies a property, then all abstract objects do.

References

Kirchner, D. , C. Benzmüller, and E. N. Zalta, 2020, “Mechanizing principia logico-metaphysica in functional type theory”, Review of Symbolic Logic, 13(1): 206–218, DOI: CrossRef

Manzano, M., 1996, Extensions of First Order Logic, Cambridge University Press, New York.

Manzano, M., and M. C. Moreno, 2017, “Identity, equality, nameability and completeness”, Bulletin of the Section of Logic, 46(3/4): 169–195. DOI: CrossRef

Nodelman, U., and E. N. Zalta, 2014, “Foundations for mathematical structuralism”, Mind, 123(489): 39–78. DOI: CrossRef

Nodelman, U., and E. N. Zalta, 2024, “Number theory and infinity without mathematics”, Journal of Philosophical Logic, 53(5): 1161–1197. DOI: CrossRef

Świętorzecka, K., 2017, “Bolzano’s argument for the existence of substances: a formalization with two types of predication”, Acta Analytica, 32: 411–426. DOI: CrossRef

Świętorzecka, K., 2019, “Two formal interpretations of Bolzano’s theory of substances and adherences”, Axiomathes, 29(3): 265–284. DOI: CrossRef

Zalta, E. N., 1983, Abstract Objects: An Introduction to Axiomatic Metaphysics, Dordrecht: D. Kluwer Academic Publishers.

Zalta, E. N., 1988, Intensional Logic and the Metaphysics of Intentionality, Cambridge: MIT Press.

Zalta, E. N., 1997, “The modal object calculus and its interpretation”, pages 249–279 in M. de Rijke (ed.), Advances in Intensional Logic, Dordrecht: Kluwer Academic Publishers.

Zalta, E. N., 1999, “Natural numbers and natural cardinals as abstract objects: A partial reconstruction of Frege’s grundgesetze in object theory”, Journal of Philosophical Logic, 28: 617–658. DOI: CrossRef

Zalta, E. N., 2025a, “Principia logico-metaphysica”. https://mally.stanford.edu/principia.pdf

Zalta, E. N., 2025b, “The power of predication and quantification”, Open Philosophy, 8(1): 20240059. DOI: CrossRef

Downloads

  • PDF

Published

2026-02-17

How to Cite

1.
UZAR, Bartłomiej. Two Semantics for Zalta’s Object Theory. Logic and Logical Philosophy. Online. 17 February 2026. pp. 1`-26. [Accessed 22 February 2026]. DOI 10.12775/LLP.2026.002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2026 Bartłomiej Uzar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 53
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

object theory, abstract objects, formalized ontology, Edward Zalta
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop