Swap Kripke Models for Deontic LFIs
DOI:
https://doi.org/10.12775/LLP.2026.001Keywords
deontic logic, paraconsistent logic, da Costa logics, nondeterministic semantics, Nmatrices, swap structures, moral dilemmasAbstract
We present a construction of nondeterministic semantics for some deontic logics based on the class of paraconsistent logics known as Logics of Formal Inconsistency (LFIs), for the first time combining swap structures and Kripke models through the novel notion of swap Kripke models. We start by making use of Nmatrices to characterize systems based on LFIs that do not satisfy axiom (cl), while turning to RNmatrices when the latter is considered in the underlying LFIs. This paper also presents, for the first time, a full axiomatization and a semantics for the CDn hierarchy, utilizing the aforementioned mixed semantics with RN matrices. It includes the historical system CD1 of da Costa and Carnielli (1986), the first deontic paraconsistent system proposed in the literature.
References
Avron, A., 2007, “Non-deterministic semantics for logics with a consistency zoperator”, International Journal of Approximate Reasoning 45: 271–287. DOI: CrossRef
Batens, D., 1980a, “A completeness-proof method for extensions of the implicational fragment of the propositional calculus”, Notre Dame Journal of Formal Logic 21(3): 509–517. DOI: CrossRef
Batens, D., 1980b, “Paraconsistent extensional propositional logics”, Logique et Analyse 23(90/91): 195–234.
Beirlaen, M. and C. Straßer, 2011, “A paraconsistent multi-agent framework zfor dealing with normative conflicts”, pages 312–329 in J. Leite et al., (eds.), Computational Logic in Multi-Agent Systems, volume 6814 of Lecture Notes in Computer Science (LNAI). DOI: CrossRef
Bueno-Soler, J., 2011, “Two semantical approaches to paraconsistent modalities”, Logica Universalis 4(1): 137–160. DOI: CrossRef
Carnielli, W., and M. E. Coniglio, 2016, Paraconsistent Logic: Consistency, Contradiction and Negation, volume 40 of Logic, Epistemology, and the Unity of Science, Springer Nature, Cham. DOI: CrossRef
Carnielli, W., M. E. Coniglio, and J. Marcos, 2007, “Logics of formal inconsistency”, pages 1–93 in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, volume 14, Springer, Dordrecht. DOI: CrossRef
Coniglio, M. E., 2009, “Logics of deontic inconsistency”, Revista Brasileira de Filosofia 233:162–186. Preprint available for download at CLE e-Prints, 7(4), 2007.
Coniglio, M. E., L. Fariñas del Cerro, and N. M. Peron, 2015, “Finite non-deterministic semantics for some modal systems”, Journal of Applied Non-Classical Logics 25(1): 20–45. DOI: CrossRef
Coniglio, M. E., and A. C. Golzio, 2019, “Swap structures semantics for Ivlev-like modal logics”, Soft Computing 23(7): 2243–2254. DOI: CrossRef
Coniglio, M. E., P. Pawłowski, and D. Skurt, 2025, modal logics”, The Review for Symbolic Logic 18(3):“RNmatrices for 744–774. DOI: CrossRef
Coniglio, M. E., and N. M. Peron, 2009, “A paraconsistentist approach to Chisholm’s paradox”, Principia: An International Journal of Epistemology 13(3): 299–326. DOI: CrossRef
Coniglio, M. E., and G. V. Toledo, 2022, “Two decision procedures for da Costa’s Cn logics based on restricted Nmatrix semantics”, Studia Logica 110(3): 601–642. DOI: CrossRef
da Costa, N. C. A., and W. Carnielli, 1986, “On paraconsistent deontic logic”, Philosophia 16(3–4): 293–305. DOI: CrossRef
Grätz, L., 2021, “Truth tables for modal logics T and S4, by using three-valued non-deterministic level semantics”, Journal of Logic and Computation 32(1): 129–157. DOI: CrossRef
Hansson, S.-O., 2013, “The varieties of permission”, pages 195–240 in D. Gabbay et al., (eds.), Handbook of Deontic Logic and Normative Systems, College Publications, London. DOI: CrossRef
Leme, R., C. Olarte, E. Pimentel, and M. E. Coniglio, 2025, “The modal cube revisited: Semantics without worlds” pages 181–200 in G. L. Pozzato and T. Uustalu (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, volume 15980 of Lecture Notes in Computer Science (LNAI), Springer Nature, Cham. DOI: CrossRef
McGinnis, C., 2007, “Paraconsistency and deontic logic: Formal systems for reasoning with normative conflicts”, PhD thesis, University of Minnesota.
Omori, H., and D. Skurt, 2016, “More modal semantics without possible worlds”, IFCoLog Journal of Logic and its Applications 3(5): 815–846.
Pawlowski, P. and D. Skurt, 2024, “□ and ♦ in eight-valued non-deterministic semantics for modal logics”, Journal of Logic and Computation, 35(2): exae010. DOI: CrossRef
Peron, N. M., and M. E. Coniglio, 2008, “Logics of deontic inconsistencies and paradoxes”, CLE e-prints, 8(6).
Puga, L. Z., N. C. A. da Costa, and W. Carnielli, 1988, “Kantian and non-Kantian logics”, Logique Et Analyse, 31(121/122): 3–9.
Puga, L. Z., and N. C. A. da Costa, 1987a, “Sobre a lógica deôntica não-clássica”, Crítica: Revista Hispanoamericana de Filosofía, 19(55): 19–37. DOI: CrossRef
Puga, L. Z., and N. C. A. da Costa, 1987b, “Logic with deontic and legal modalities, preliminary account”, Bulletin of the Section of Logic, 16(2): 71–75.
Vaz, M., G. and Maruchi, 2025, “Modeling deontic inconsistencies in moral dilemmas”, Perspectiva Filosófica 52(2): 174–206. DOI: CrossRef
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mahan Vaz, Marcelo E. Coniglio

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 36
Number of citations: 0