Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Swap Kripke Models for Deontic LFIs
  • Home
  • /
  • Swap Kripke Models for Deontic LFIs
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Swap Kripke Models for Deontic LFIs

Authors

  • Mahan Vaz Instituto de Filosofia e Ciências Humanas (IFCH), Universidade Estadual de Campinas (UNICAMP), Brazil; Institut für Philosophie I, Logik und Erkenntnistheorie, Ruhr-Universität, Bochum, Germany https://orcid.org/0000-0002-0187-731X
  • Marcelo E. Coniglio Instituto de Filosofia e Ciências Humanas (IFCH); Centro de Lógica, Epistemologia e História da Ciência (CLE), Universidade Estadual de Campinas (UNICAMP), Brazil https://orcid.org/0000-0002-1807-0520

DOI:

https://doi.org/10.12775/LLP.2026.001

Keywords

deontic logic, paraconsistent logic, da Costa logics, nondeterministic semantics, Nmatrices, swap structures, moral dilemmas

Abstract

We present a construction of nondeterministic semantics for some deontic logics based on the class of paraconsistent logics known as Logics of Formal Inconsistency (LFIs), for the first time combining swap structures and Kripke models through the novel notion of swap Kripke models. We start by making use of Nmatrices to characterize systems based on LFIs that do not satisfy axiom (cl), while turning to RNmatrices when the latter is considered in the underlying LFIs. This paper also presents, for the first time, a full axiomatization and a semantics for the CDn hierarchy, utilizing the aforementioned mixed semantics with RN matrices. It includes the historical system CD1 of da Costa and Carnielli (1986), the first deontic paraconsistent system proposed in the literature.

References

Avron, A., 2007, “Non-deterministic semantics for logics with a consistency zoperator”, International Journal of Approximate Reasoning 45: 271–287. DOI: CrossRef

Batens, D., 1980a, “A completeness-proof method for extensions of the implicational fragment of the propositional calculus”, Notre Dame Journal of Formal Logic 21(3): 509–517. DOI: CrossRef

Batens, D., 1980b, “Paraconsistent extensional propositional logics”, Logique et Analyse 23(90/91): 195–234.

Beirlaen, M. and C. Straßer, 2011, “A paraconsistent multi-agent framework zfor dealing with normative conflicts”, pages 312–329 in J. Leite et al., (eds.), Computational Logic in Multi-Agent Systems, volume 6814 of Lecture Notes in Computer Science (LNAI). DOI: CrossRef

Bueno-Soler, J., 2011, “Two semantical approaches to paraconsistent modalities”, Logica Universalis 4(1): 137–160. DOI: CrossRef

Carnielli, W., and M. E. Coniglio, 2016, Paraconsistent Logic: Consistency, Contradiction and Negation, volume 40 of Logic, Epistemology, and the Unity of Science, Springer Nature, Cham. DOI: CrossRef

Carnielli, W., M. E. Coniglio, and J. Marcos, 2007, “Logics of formal inconsistency”, pages 1–93 in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, volume 14, Springer, Dordrecht. DOI: CrossRef

Coniglio, M. E., 2009, “Logics of deontic inconsistency”, Revista Brasileira de Filosofia 233:162–186. Preprint available for download at CLE e-Prints, 7(4), 2007.

Coniglio, M. E., L. Fariñas del Cerro, and N. M. Peron, 2015, “Finite non-deterministic semantics for some modal systems”, Journal of Applied Non-Classical Logics 25(1): 20–45. DOI: CrossRef

Coniglio, M. E., and A. C. Golzio, 2019, “Swap structures semantics for Ivlev-like modal logics”, Soft Computing 23(7): 2243–2254. DOI: CrossRef

Coniglio, M. E., P. Pawłowski, and D. Skurt, 2025, modal logics”, The Review for Symbolic Logic 18(3):“RNmatrices for 744–774. DOI: CrossRef

Coniglio, M. E., and N. M. Peron, 2009, “A paraconsistentist approach to Chisholm’s paradox”, Principia: An International Journal of Epistemology 13(3): 299–326. DOI: CrossRef

Coniglio, M. E., and G. V. Toledo, 2022, “Two decision procedures for da Costa’s Cn logics based on restricted Nmatrix semantics”, Studia Logica 110(3): 601–642. DOI: CrossRef

da Costa, N. C. A., and W. Carnielli, 1986, “On paraconsistent deontic logic”, Philosophia 16(3–4): 293–305. DOI: CrossRef

Grätz, L., 2021, “Truth tables for modal logics T and S4, by using three-valued non-deterministic level semantics”, Journal of Logic and Computation 32(1): 129–157. DOI: CrossRef

Hansson, S.-O., 2013, “The varieties of permission”, pages 195–240 in D. Gabbay et al., (eds.), Handbook of Deontic Logic and Normative Systems, College Publications, London. DOI: CrossRef

Leme, R., C. Olarte, E. Pimentel, and M. E. Coniglio, 2025, “The modal cube revisited: Semantics without worlds” pages 181–200 in G. L. Pozzato and T. Uustalu (eds.), Automated Reasoning with Analytic Tableaux and Related Methods, volume 15980 of Lecture Notes in Computer Science (LNAI), Springer Nature, Cham. DOI: CrossRef

McGinnis, C., 2007, “Paraconsistency and deontic logic: Formal systems for reasoning with normative conflicts”, PhD thesis, University of Minnesota.

Omori, H., and D. Skurt, 2016, “More modal semantics without possible worlds”, IFCoLog Journal of Logic and its Applications 3(5): 815–846.

Pawlowski, P. and D. Skurt, 2024, “□ and ♦ in eight-valued non-deterministic semantics for modal logics”, Journal of Logic and Computation, 35(2): exae010. DOI: CrossRef

Peron, N. M., and M. E. Coniglio, 2008, “Logics of deontic inconsistencies and paradoxes”, CLE e-prints, 8(6).

Puga, L. Z., N. C. A. da Costa, and W. Carnielli, 1988, “Kantian and non-Kantian logics”, Logique Et Analyse, 31(121/122): 3–9.

Puga, L. Z., and N. C. A. da Costa, 1987a, “Sobre a lógica deôntica não-clássica”, Crítica: Revista Hispanoamericana de Filosofía, 19(55): 19–37. DOI: CrossRef

Puga, L. Z., and N. C. A. da Costa, 1987b, “Logic with deontic and legal modalities, preliminary account”, Bulletin of the Section of Logic, 16(2): 71–75.

Vaz, M., G. and Maruchi, 2025, “Modeling deontic inconsistencies in moral dilemmas”, Perspectiva Filosófica 52(2): 174–206. DOI: CrossRef

Downloads

  • PDF

Published

2026-01-05

How to Cite

1.
VAZ, Mahan and CONIGLIO, Marcelo E. Swap Kripke Models for Deontic LFIs. Logic and Logical Philosophy. Online. 5 January 2026. pp. 1-40. [Accessed 10 January 2026]. DOI 10.12775/LLP.2026.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2026 Mahan Vaz, Marcelo E. Coniglio

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 36
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

deontic logic, paraconsistent logic, da Costa logics, nondeterministic semantics, Nmatrices, swap structures, moral dilemmas
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop