Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Simplified Semantics for Further Relevant Logics II: Propositional Constants
  • Home
  • /
  • Simplified Semantics for Further Relevant Logics II: Propositional Constants
  1. Home /
  2. Archives /
  3. Vol. 34 No. 2 (2025): June /
  4. Articles

Simplified Semantics for Further Relevant Logics II

Propositional Constants

Authors

  • Tore Fjetland Øgaard Department of Philosophy, University of Bergen https://orcid.org/0000-0002-7082-991X

DOI:

https://doi.org/10.12775/LLP.2024.022

Keywords

relevant logics, simplified Routley-Meyer semantics, propositional constants

Abstract

It is shown how to model propositional constants within the simplified Routley-Meyer semantics. Various axioms and rules allowing the definition of modal operators, implicative negations, enthymematical conditionals, and propositions expressing various infinite conjunctions and disjunctions are set forth and shown to correspond to specific frame conditions. Two propositional constants which are both often designated as “the Ackermann constant” are shown to capture two such “infinite” propositions: The conjunction of every logical law and the conjunction of every truth –what Anderson and Belnap called the “world” constant.

References

Ackermann, W., 1956, “Begründung einer strengen Implikation”, Journal of Symbolic Logic, 21(2): 113–128. DOI: http://dx.doi.org/10.2307/2268750

Anderson, A. R., and N. D. Belnap, 1959, “Modalities in Ackermann’s “rigorous implication””, Journal of Symbolic Logic, 24(2): 107–111. DOI: http://dx.doi.org/10.2307/2964754

Anderson, A. R., and N. D. Belnap, 1975, Entailment: The Logic of Relevance and Necessity, volume 1, Princeton University Press, Princeton.

Belnap, N. D., and J. M. Dunn, 1981, “Entailment and the disjunctive syllogism”, pages 337–366 in G. Fløistad and G. H. von Wright (eds.), Contemporary philosophy: A new survey, volume 1, Springer Netherlands, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-009-8356-4_13

Berto, F., 2015, “A modality called ‘negation’ ”, Mind, 124(495): 761–793. DOI: http://dx.doi.org/10.1093/mind/fzv026

Berto, F., and G. Restall, 2019, “Negation on the Australian plan”, Journal of Philosophical Logic. DOI: http://dx.doi.org/10.1007/S10992-019-09510-2

Church, A., 1951, “The weak theory of implication”, pages 22–37 in A. Menne, A. Wilhelmy, and H. Angsil (eds.), Kontroliertes Denken: Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften, Kommissions-Verlag Karl Alber, Munich.

Meyer, R. K., 1966, “Topics in modal and many-valued logic”, PhD thesis, University of Pittsburgh. https://www.proquest.com/dissertations-theses/topics-modal-many-valued-logic/docview/302210710/se-2

Meyer, R. K., 1970, “E and S4”, Notre Dame J. Formal Logic, 11(2): 181–199. DOI: http://dx.doi.org/10.1305/ndjfl/1093893935

Meyer, R. K., and J. M. Dunn, 1969, “E, R and γ”, Journal of Symbolic Logic, 34: 460–474. DOI: http://dx.doi.org/10.2307/2270909

Øgaard, T. F., 2020, “Boolean negation and non-conservativity I: Relevant modal logics”, Logic Journal of the IGPL. DOI: http://dx.doi.org/10.1093/jigpal/jzaa019

Øgaard, T. F., 2021a, “Non-Boolean classical relevant logics I”, Synthese, 198: 6993–7024. DOI: http://dx.doi.org/10.1007/s11229-019-02507-z

Øgaard, T. F., 2021b, Non-Boolean classical relevant logics II: Classicality through truth-constants”, Synthese, 199: 6169–6201. DOI: http://dx.doi.org/10.1007/s11229-021-03065-z

Øgaard, T. F., 2024, “Simplified semantics for further relevant logics II: Propositional Constants”, Logic and Logical Philosophy. DOI: http://dx.doi.org/10.12775/LLP.2024.021

Priest, G., 2006, In Contradiction, Oxford University Press, Oxford, 2nd edition. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199263301.001.0001

Priest, G., and R. Sylvan, 1992, “Simplified semantics for basic relevant logic”, Journal of Philosophical Logic, 21(2): 217–232. DOI: http://dx.doi.org/10.1007/BF00248640

Restall, G., “Simplified semantics for relevant logics (and some of their rivals)”, 1993, Journal of Philosophical Logic, 22(5): http://dx.doi.org/481–511. DOI: 10.1007/BF01349561

Restall, G., “On logics without contraction”, PhD thesis, The University of Queensland, 1994. https://consequently.org/writing/onlogics/

Restall, G., 2000, An Introduction to Substructural Logics, Routledge, London. DOI: http://dx.doi.org/10.4324/9780203016244

Routley, R., 1980, Exploring Meinong’s Jungle and Beyond, Departmental Monograph, Philosophy Department, RSSS, Australian National University, vol. 3. Canberra: RSSS, Australian National University, Canberra. https://hdl.handle.net/11375/14805

Routley, R., R. K. Meyer, V. Plumwood, and R. T. Brady, 1982, Relevant Logics and Their Rivals, volume 1, Ridgeview Publishing Company, Atascadero, California.

Slaney, J. K., 1989, “RWX is not Curry-paraconsistent”, pages 472–480 in G. Priest, R. Sylvan, and J. Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag.

Standefer, Sh., n.d., Relevant Logics: Implication, Modality, Quantification, Cambridge University Press.

Weber, Z., 2010, “Transfinite numbers in paraconsistent set theory”, The Review of Symbolic Logic, 3(1): 71–92. DOI: http://dx.doi.org/10.1017/S1755020309990281

Logic and Logical Philosophy

Downloads

  • PDF

Published

2024-08-27

How to Cite

1.
ØGAARD, Tore Fjetland. Simplified Semantics for Further Relevant Logics II: Propositional Constants. Logic and Logical Philosophy. Online. 27 August 2024. Vol. 34, no. 2, pp. 161-191. [Accessed 11 July 2025]. DOI 10.12775/LLP.2024.022.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 34 No. 2 (2025): June

Section

Articles

License

Copyright (c) 2024 Tore Fjetland Øgaard

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 956
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

relevant logics, simplified Routley-Meyer semantics, propositional constants
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop