A Paradox of ZF-Class Nominalism
DOI:
https://doi.org/10.12775/LLP.2024.028Słowa kluczowe
class nominalism, Zermelo-Fraenkel set theory, Gödel’s incompleteness theoremAbstrakt
In a recent article in this journal, Calemi challenges the Küng-Armstrong trilemma, a well-known objection to traditional class nominalism, by proposing a fusion of class nominalism with Zermelo-Fraenkel set theory (ZF). In this note, we argue that ZF-class nominalism faces significant challenges in the form of incompleteness and potential paradoxes stemming from Gödel’s incompleteness theorem. We will explore these issues in detail, highlighting the key implications for the viability of ZF-class nominalism as a philosophical position.
Bibliografia
Armstrong, D. M., 1978, Universals and Scientific Realism. Volume 1: Nominalism and Realism, Cambridge: Cambridge University Press.
Calemi, F. F., 2024, “ZF-class nominalism and the Küng-Armstrong trilemma: A plea for moderate ineffabilism”, Logic and Logical Philosophy 33 (2): 205–223. DOI: https://doi.org/10.12775/LLP.2024.005
Küng, G., 1967, Ontology and the Logical Analysis of Language: An Enquiry into the Contemporary Views on Universals, Dordrecht: Reidel.
Rodriguez-Pereyra, G., 2001, “Resemblance nominalism and Russell’s regress”, Australasian Journal of Philosophy 79 (3): 395–408. DOI: https://doi.org/10.1080/713659267
Rodriguez-Pereyra, G., 2004, “Paradigms and Russell’s resemblance regress”, Australasian Journal of Philosophy 82 (4): 644–651. DOI: https://doi.org/10.1080/713659904
Russell, B., 1912, “The world of universals”, chapter IX in The Problems of Philosophy, London: Williams and Norgate. Also, pages 45–50 in D. H. Mellor and A. Oliver (eds.), Properties, Oxford: Oxford University Press, 1997. See https://www.gutenberg.org/files/5827/5827-h/5827-h.htm#link2HCH0009 or http://www.sophia-project.org/uploads/1/3/9/5/13955288/russell_universals.pdf
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Guanglong Luo

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 527
Liczba cytowań: 0