Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Consequential Implication and the Implicative Conditional
  • Home
  • /
  • Consequential Implication and the Implicative Conditional
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Consequential Implication and the Implicative Conditional

Authors

  • Gilberto Gomes PGCL, State University of Norte Fluminense Darcy Ribeiro, Rio de Janeiro https://orcid.org/0000-0002-3667-3851
  • Claudio Pizzi Università di Siena https://orcid.org/0000-0003-0124-6566
  • Eric Raidl Cluster of Excellence “Machine Learning for Science”, Eberhard Karls Universität, Tübingen https://orcid.org/0000-0001-6153-4979

DOI:

https://doi.org/10.12775/LLP.2025.001

Keywords

consequential implication, implicative conditional, Aristotle’s thesis, Boethius’ thesis, contraposition, connexivity, definable conditionals, strong super-strict implication, square of oppositions

Abstract

This paper compares two logical conditionals which are strengthenings of the strict conditional and avoid the paradoxes of strict implication. The logics of both may be viewed as extensions of KT, and the two conditionals are interdefinable in KT. The implicative conditional requires that its antecedent and consequent be both contingent. The consequential conditional may be viewed as a weakening of the implicative conditional, insofar as it also admits the case in which the antecedent and the consequent are strictly equivalent (either both necessary or both impossible). The two conditionals share a number of properties, among them Transitivity, Contraposition, Aristotle’s Thesis, Weak Boethius’ Thesis and Aristotle’s Second Thesis. They also share some restricted principles such as Possibilistic Monotonicity, Possibilistic Simplification and Possibilistic Right Weakening. They differ in relation to Identity, which is validated by consequential implication, while the implicative conditional only validates the restricted principle of Possibilistic Identity. The relations between the two conditionals are represented by two Aristotelian cubes of opposition, one involving the contrariety between If A, then B and If A, then ¬B, according to Weak Boethius’ Thesis, and the other the contrariety between If A, then B and If ¬A, then B, according to Aristotle’s Second Thesis. We also explore the relations between the two logical conditionals and natural language conditionals, emphasizing the dependence of the latter on the context, and the need to distinguish natural language conditionals which may be viewed as consequential or implicative, on one side, and concessive and some other types of conditionals, on the other.

References

Anderson, A. R., and N. D. Belnap, 1975, Entailment: The Logic of Relevance and Necessity, volume 1, Princeton University Press, Princeton.

Angell, R. B., 1962, “A propositional logic with subjunctive conditionals”, The Journal of Symbolic Logic, 27(3): 327–343. DOI: https://doi.org/10.2307/2964651

Åqvist, L., 1973, “Modal logic with subjunctive conditionals and dispositional predicates”, Journal of Philosophical Logic, 2: 1–76. DOI: https://doi.org/10.1007/bf02115609

Bennett, J., 2003, A Philosophical Guide to Conditionals, Oxford University Press, New York. DOI: https://doi.org/10.1093/0199258872.001.0001

Blanshard, B., 1969, The Nature of Thought, G. Allen & Unwin, London.

Bolzano, B., 1978, Grundlegung der Logik. Wissenschaftslehre I/II, Felix Meiner Verlag, Hamburg. French translation: Théorie de la Science Paris: Gallimard, 2011. DOI: https://doi.org/10.28937/978-3-7873-2626-6

Burgess, J. P., 1981, “Quick completeness proofs for some logics of conditionals”, Notre Dame Journal of Formal Logic, 22(1): 76–84. DOI: https://doi.org/10.1305/ndjfl/1093883341

Burks, A. W., 1955, “Dispositional statements”, Philosophy of Science, 22(3): 175–193. DOI: https://doi.org/10.1086/287422

Chellas, B. F., 1975, “Basic conditional logic”, Journal of Philosophical Logic, 4(2): 133–153. DOI: https://doi.org/10.1007/BF00693270

Crupi, V., and A. Iacona, 2022, “On the logical form of concessive conditionals”, Journal of Philosophical Logic, 51: 633–651. DOI: https://doi.org/10.1007/s10992-021-09645-1

Davis, W. A., 1983, “Weak and strong conditionals”, Pacific Philosophical Quarterly, 64(1): 57–71. DOI: https://doi.org/10.1111/j.1468-0114.1983.tb00184.x

Douven., I., 2015, The Epistemology of Indicative Conditionals: Formal and Empirical Approaches, Cambridge University Press, Cambridge.

Douven, I., 2017, “How to account for the oddness of missing-link conditionals”, Synthese, 194: 1541–1554. DOI: https://doi.org/10.1007/s11229-015-0756-7

Ducrot, O., 1972/1991, Dire et ne pas dire Hermann, Paris.

Edgington, D., 1995, “On conditionals”, Mind, 104(414): 235–329. DOI: https://doi.org/10.1093/mind/104.414.235

Gherardi, G., and E. Orlandelli, 2021, “Super-strict implications”, Bulletin of the Section of Logic, 50(1): 1–34. DOI: https://doi.org/10.18778/0138-0680.2021.02

Gherardi, G., E. Orlandelli, and E. Raidl, 2024, “Proof systems for super-strict implication”, Studia Logica, 112: 249–294. DOI: https://doi.org/10.1007/s11225-023-10048-3

Gibbard, A., 1981, “Two recent theories of conditionals”, pages 211–247 in W. L. Harper, R. Stalnaker and G. Pearce (eds.), Ifs: Conditionals, belief, decision, chance and time, The University of Western Ontario Series in Philosophy of Science, vol. 15, Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-9117-0_10

Gomes, G., 2005, “Ordinary language conditionals”, Manuscript. https://www.academia.edu/93865496/Ordinary_Language_Conditionals_2005

Gomes, G., 2009, “Are necessary and sufficient conditions converse relations?”, Australasian Journal of Philosophy, 87(3): 375–387. DOI: https://doi.org/10.1080/00048400802587325

Gomes, G., 2013, “Pensamento e linguagem nas afirmações condicionais”, DELTA: Documentação de Estudos em Linguística Teórica e Aplicada, 29(1): 121–134. DOI: https://doi.org/10.1590/s0102-44502013000100006

Gomes, G., 2019, “Meaning-preserving contraposition of natural language conditionals”, Journal of Pragmatics, 152: 46–60. DOI: https://doi.org/10.1016/j.pragma.2019.08.003

Gomes, G., 2020, “Concessive conditionals without ‘even if’ and nonconcessive conditionals with ‘even if’ ”, Acta Analytica, 35(1): 1–21. DOI: https://doi.org/10.1007/s12136-019-00396-y

Gomes, G., 2024, “Necessary and sufficient conditions, counterfactuals and causal explanations”, Erkenntnis, 89(8): 3085–3108. DOI: https://doi.org/10.1007/s10670-023-00668-5

Humberstone, I., 1978, “Two merits of the circumstantial operator language for conditional logics”, Australasian Journal of Philosophy, 56(1): 21–24. DOI: https://doi.org/10.1080/00048407812341011

Jackson, F., 1979, “On assertion and conditionals”, Philosophical Review, 88: 565–589. DOI: https://doi.org/10.2307/2184845

Kielkopf, C. F., 1977, Formal Sentential Entailment, University Press of America, Washington.

Lenzen, W., 2021, “The third and fourth stoic accounts of conditionals”, pages 127–146 in M. Blicha and I. Sedlár (eds.), The Logica Yearbook 2020, College Publications, Rickmansworth.

Lewis, D., 1973, Counterfactuals, Blackwell, Oxford. DOI: https://doi.org/10.1007/978-94-009-9117-0_3

Lycan, W. G., 2001, Real Conditionals, Oxford University Press, Oxford. DOI: https://doi.org/10.1093/oso/9780199242078.001.0001

Martin, C., 2004, “Logic”, pages 158–199 in J. Brower and K. Guilfoy (eds.), The Cambridge Companion to Abelard, Handbook of the History of Logic, Cambridge University Press, Cambridge.

McCall, S., 1966, “Connexive implication”, The Journal of Symbolic Logic, 31(3): 415–433. DOI: https://doi.org/10.2307/2270458

McCall, S., 2012, “A history of connexivity”, pages 415–449 in D. M. Gabbay, F. J. Pelletier, and J. Woods (eds.), Logic: A History of its Central Concepts, volume 11 of Handbook of the History of Logic, North-Holland, Amsterdam. DOI: https://doi.org/10.1016/b978-0-444-52937-4.50008-3

Meyer, R. K., 1977, “S5–The poor man’s connexive implication”, The Relevance Logic Newsletter, 2: 117–123.

Mortensen, C., 1984, “Aristotle’s thesis in consistent and inconsistent logics”, Studia Logica, 43(1/2): 107–116. DOI: https://doi.org/10.1007/BF00935744

Nastide Vincentis, M., 2006, “Conflict and connectedness: Between modern logic and the history of ancient logic”, pages 229–251 in E. Ballo and M. Franchella (eds.), Logic and Philosophy in Italy, Polimetrica International Scientific Publisher, Monza.

Pizzi, C., 1980, “‘Since’, ‘even if’, ‘as if’ ”, pages 73–87 in M. L. Dalla Chiara (ed.), Italian Studies in the Philosophy of Science, Springer, Dordrecht. DOI: https://doi.org/ 10.1007/978-94-009-8937-5_6

Pizzi, C., 1991, “Decision procedures for logics of consequential implication”, Notre Dame Journal of Formal Logic, 32(4): 618–636. DOI: https://doi.org/10.1305/ndjfl/1093635934

Pizzi, C., 1993, “Causality and the transitivity of counterfactuals”, O que nos faz pensar, 7: 89–103.

Pizzi, C., 2018, “Two kinds of consequential implication”, Studia Logica, 106: 453–480. DOI: https://doi.org/10.1007/s11225-017-9749-5

Pizzi, C., 2022, “Axioms for a logic of consequential counterfactuals”, Logic Journal of the IGPL, 31(5): 907–925. DOI: https://doi.org/10.1093/jigpal/jzac052

Pizzi, C., 2024, “An introduction to Boethian logics”, pages 79–110 in H. Omori and H. Wansing (eds.), 60 Years of Connexive Logics, Springer.

Pizzi, C., and T. Williamson, 1997, “Strong Boethius’ thesis and consequential implication”, Journal of Philosophical Logic, 26(5): 569–588. DOI: https://doi.org/10.1023/a:1004230028063

Pollock, J. L., 1976, Subjunctive Reasoning, D. Reidel, Dordrecht.

Priest, G., 1999, “Negation as cancellation, and connexive logic”, Topoi, 18: 14–148. DOI: https://doi.org/10.1023/A:1006294205280

Raidl, E., 2019, “Completeness for counter-doxa conditionals – using ranking semantics”, The Review of Symbolic Logic, 12(4): 861–891. DOI: https://doi.org/10.1017/S1755020318000199

Raidl, E., 2021a, “Definable conditionals”, Topoi, 40(1): 87–105. DOI: https://doi.org/10.1007/s11245-020-09704-3

Raidl, E., 2021b, “Strengthened conditionals”, pages 139–155 in B. Liao and Y. N. Wáng (eds.), Context, Conflict and Reasoning. Logic in Asia Series, Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-7134-3_11

Raidl, E., 2021c, “Three conditionals: Contraposition, difference-making and dependency”, pages 201–217 in M. Blicha and I. Sedlár (eds.), The Logica Yearbook 2020, College Publications.

Raidl, E., 2023, “Neutralization, Lewis’ doctored conditional, or another note on ‘a connexive conditional’”, Logos & Episteme, 14(1): 101–118. DOI: https://doi.org/10.5840/logos-episteme20231415

Raidl, E., 2025a (forthcoming), “Between Lewis and Burgess I: Logics without rational monotonicity”, Journal of Philosophical Logic, pages 1–38.

Raidl, E., 2025b (forthcoming), “Between Lewis and Burgess II : Semantics without rational monotonicity”, Journal of Philosophical Logic, pages 1–52.

Raidl, E., and G. Gomes, 2024, “The implicative conditional”, Journal of Philosophical Logic, 53(1): 1–47. DOI: https://doi.org/10.1007/s10992-023-09715-6

Raidl, E., A. Iacona, and V. Crupi, 2021, “The logic of the evidential conditional”, Review of Symbolic Logic, 15(3): 758–770. DOI: https://doi.org/10.1017/S1755020321000071

Raidl, E., A. Iacona, and V. Crupi, 2023, “An axiomatic system for concessive conditionals,” Studia Logica, 112: 343–363. DOI: https://doi.org/10.1007/s11225-022-10034-1

Raidl, E., and H. Rott, 2023, “Threshold-based belief change”, Australasian Journal of Logic, 20(3): 429–477. DOI: https://doi.org/10.26686/ajl.v20i3.7408

Raidl, E., and H. Rott, 2024, “Towards a logic for ‘because’ ”, Philosophical Studies, 181: 2247–2277. DOI: https://doi.org/10.1007/s11098-023-01998-4

Ramsey, F. P., 1929, “General propositions and causality”, pages 133–151 in H. A. Mellor (ed.), Philosophical Papers, Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/cbo9780511527494.006

Rott, H., 1986, “Ifs, though and because”, Erkenntnis, 25(3): 345–370. DOI: https://doi.org/10.1007/BF00175348

Rott, H., 2020, “Notes on contraposing conditionals”. https://philsciarchive.pitt.edu/17092/

Rott, H., 2022, “Difference-making conditionals and the relevant Ramsey test”, Review of Symbolic Logic, 15(1): 133–164. DOI: https://doi.org/10.1017/S1755020319000674

Rott, H., 2024a, “Evidential support and contraposition”, Erkenntnis, 89: 2253–2271. DOI: https://doi.org/10.1007/s10670-022-00628-5

Rott, H., 2024b, “Difference-making conditionals and connexivity”, Studia Logica, 112: 405–458. DOI: https://doi.org/10.1007/s11225-023-10071-4

Routley, R., 1978, “Semantics for connexive logics. I”, Studia Logica, 37(4): 393–412. DOI: https://doi.org/10.1007/BF02176171

Routley, R., and V. Routley, 1985, “Negation and contradiction”, Revista Colombiana de Matematicas, 19(1–2): 201–230. https://repositorio.unal.edu.co/handle/unal/48791

Spohn, W., 2013, “A ranking-theoretic approach to conditionals”, Cognitive Science, 37(6): 1074–1106. DOI: https://doi.org/10.1111/cogs.12057

Spohn, W., 2015, “Conditionals: A unifying ranking-theoretic perspective”, Philosophers’ Imprint, 15(1): 1–30. http://hdl.handle.net/2027/spo.3521354.0015.001

Stalnaker, R. C., 1968, “A theory of conditionals”, pages 98–112 in N. Rescher (ed.), Studies in Logical Theory, American Philosophical Quarterly Monographs 2, Blackwell, Oxford. DOI: https://doi.org/10.1007/978-94-009-9117-0_2

Strawson, P. F., 1948, “Necessary propositions and entailment-statements”, Mind, 57(226): 184–200. DOI: https://doi.org/10.1093/mind/lvii.226.184

Thompson, B. E., 1991, “Why is conjunctive simplification invalid?”, Notre Dame Journal of Formal Logic, 32(2): 248–254. DOI: https://doi.org/10.1305/ndjfl/1093635749

Tichý, P., 1984, “Subjunctive conditionals: Two parameters vs. three”, Philosophical Studies, 45(2): 147–179. DOI: https://doi.org/10.1007/bf00372476

Wansing, H., and H. Omori, 2024, “Connexive logic, connexivity, and connexivism: Remarks on terminology”, Studia Logica, 112: 1–35. DOI: https://doi.org/10.1007/s11225-023-10082-1

Wansing, H., and D. Skurt, 2018, “Negation as cancellation, connexive logic, and qLPm”, The Australasian Journal of Logic, 15(2): 476–488. DOI: https://doi.org/10.26686/ajl.v15i2.4869

Downloads

  • PDF

Published

2025-01-16

How to Cite

1.
GOMES, Gilberto, PIZZI, Claudio and RAIDL, Eric. Consequential Implication and the Implicative Conditional. Logic and Logical Philosophy. Online. 16 January 2025. pp. 1-44. [Accessed 28 June 2025]. DOI 10.12775/LLP.2025.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2025 Gilberto Gomes, Claudio Pizzi, Eric Raidl

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 470
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

consequential implication, implicative conditional, Aristotle’s thesis, Boethius’ thesis, contraposition, connexivity, definable conditionals, strong super-strict implication, square of oppositions
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop