Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Literal and Controllable Paraconsistency
  • Home
  • /
  • Literal and Controllable Paraconsistency
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Literal and Controllable Paraconsistency

Authors

  • Janusz Ciuciura Institute of Philosophy, Department of Logic and Methodology of Science, University of Łódź https://orcid.org/0000-0001-9965-9822

DOI:

https://doi.org/10.12775/LLP.2024.027

Keywords

paraconsistent logic, Sette’s calculus, paraconsistency, paranormal logics

Abstract

The principle of explosion asserts that any formula can be derived from any pair of other contradictory formulas. Paraconsistent logic is typically regarded as a logic in which the universal validity of this principle is questioned. Therefore, a key point is determining when the validity can be considered universal to classify a logic as paraconsistent. A pertinent example to illustrate this point is the calculus CB1 that admits the principle but only for negated formulas, i.e., from any set {α, ∼α} any other formula follows if and only if α is of the form ∼γ. Another example is Sette’s calculus P1, which is paraconsistent at the level of variables but not complex formulas. Both serve as compelling examples of the so-called borderline cases.

In this paper, we examine several calculi expected to be paraconsistent at the level of literals. It means that a pair of formulas, α and ∼α, can yield any β if, and only if α is neither a propositional variable nor is its iterated negation. Furthermore, it is assumed that in some calculi presented here, β must adhere to specific restrictions. Once these conditions are satisfied, we refer to calculus as paraconsistent in a “controllable manner”.

References

Araujo, A. L., E. H. Alves and J. A. D. Guerzoni, “Some relations between modal and paraconsistent logic”, Journal of Non-Classical Logic, 8, 1987: 33–44.

Avron, A., and I. Lev, “Non-deterministic multiple-valued structures”, Journal of Logic and Computation, 15(3), 2005: 241–261. DOI: https://doi.org/10.1093/logcom/exi001

Batens, D., and K. De Clercq, “A rich paraconsistent extension of full positive logic”, Logique et Analyse, 185–188, 2004: 227–257.

Carnielli, W. A., and M. E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, Volume 40 of “Logic, Epistemology, and the Unity of Science”, Springer, Berlin–Heidelberg, 2016. DOI: https://doi.org/10.1007/978-3-319-33205-5

Carnielli, W. A., and M. Lima-Marques, “Society semantics and multiple-valued logics”, pages 33–52 in W. A. Carnielli and I. M. D’Ottaviano (eds.), Advances in Contemporary Logic and Computer Science: Proceedings of the Eleventh Brazilian Conference on Mathematical Logic, May 6-10, 1996, Salvador Da Bahia, Brazil, American Mathematical Society, 1999. DOI: https://doi.org/10.1090/conm/235

Carnielli, W. A., M. E. Coniglio, and J. Marcos, “Logics of formal inconsistency”, pages 1-93 in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 14, 2nd edn., Springer, 2007. DOI: https://doi.org/10.1007/978-1-4020-6324-4_1

Ciuciura, J., “On the system CB1 and a lattice of the paraconsistent calculi”, Logic and Logical Philosophy, 29, 2020: 223–237. DOI: https://doi.org/10.12775/llp.2019.035

Ciuciura, J., “Sette’s calculus P1 and some hierarchies of paraconsistent systems”, Journal of Logic and Computation, 30(5), 2020:1109–1124. DOI: https://doi.org/10.1093/logcom/exaa030

Da Costa, N. C. A., and E. Alves, “A semantical analysis of the calculi Cn”, Notre Dame Journal of Formal Logic, 18, 1977: 621–630.

Da Costa, N. C. A., and J.-Y. Béziau, “Carnot’s logic”, Bulletin of the Section of Logic, 22(3), 1993: 98–105.

Fernández, V. L., and M. E. Coniglio, “Combining valuations with society semantics”, Journal of Applied Non-Classical Logics, 13, 2003: 21–46. DOI: https://doi.org/10.3166/jancl.13.21-46

Hiż, H., “Extendible sentential calculus”, The Journal of Symbolic Logic, 24(3), 1959: 193–202. DOI: https://doi.org/10.2307/2963776

Karpenko, A. S., and N. Tomova, “Bochvar’s three-valued logic and literal paralogics: Their lattice and functional equivalence”, Logic and Logical Philosophy, 26, 2017: 207–235. DOI: https://doi.org/10.12775/llp.2016.029

Lewin, R. A., and I. F. Mikenberg, “Literal-paraconsistent and literal paracomplete matrices”, Mathematical Logic Quarter, 52, 2006: 478–493. DOI: https://doi.org/10.1002/malq.200510044

Loparić, A., and N. C. A. Da Costa, “Paraconsistency, paracompleteness and induction”, Logique et Analyse, 29(113), 1986: 73-80.

Loparić, A., “A semantical study of some propositional calculi”, The Journal of Non-classical Logic, 3, 1986: 73–95.

Marcos, J., “On a problem of da Costa”, pages 53–69 in G. Sica (ed.), Essays on the Foundations of Mathematics and Logic, Vol. 2, Polimetrica: Monza, Italy, 2005.

Marcos, J., “Nearly every normal modal logic is paranormal”, Logique et Analyse, 189–192, 2005: 279–300.

Mruczek-Nasieniewska, K., and M. Nasieniewski, “Syntactical and semantical characterization of a class of paraconsistent logics”, Bulletin of the Section of Logic, 34(4), 2005: 229–248.

Nowak, M., “A note on the logic CAR of Da Costa and Béziau”, Bulletin of the Section of Logic, 28(1), 1999: 43–49.

Odintsov, S. P., “The class of extensions of Nelson’s paraconsistent logic”, Studia Logica, 80, 2005: 291–320. DOI: https://doi.org/10.1007/s11225-005-8472-9

Odintsov, S. P., “On representation of N4-lattices”, Studia Logica, 76, 2004: 385–405. DOI: https://doi.org/10.1023/b:stud.0000032104.14199.08

Omori, H., “Sette’s logics, revisited”, pages 451–465 in A. Baltag, J. Seligman and T. Yamada (eds.) Logic, Rationality, and Interaction. 6th International Workshop, LORI 2017, Sapporo, Japan, September 11–14, 2017, Proceedings, Springer, 2017. DOI: https://doi.org/10.1007/978-3-662-55665-8_31

Parson, Ch., “A propositional calculus intermediate between the minimal calculus and the classical”, Notre Dame Journal of Formal Logic, 7(4), 1966: 353–358. DOI: https://doi.org/10.1305/ndjfl/1093958754

Pogorzelski, W. A., and P. Wojtylak, Completeness Theory for Propositional Logics. Studies in Universal Logic, Birkhäuser: Basel, 2008.

Puga, L. Z., and N. C. A. da Costa, “On the imaginary logic of N. A. Vasiliev”, Mathematical Logic Quarter, 34, 1988: 205–211.

Sette, A. M., “On the propositional calculus P1”, Math. Jpn., 18, 1973: 89–128.

Downloads

  • PDF

Published

2024-11-02

How to Cite

1.
CIUCIURA, Janusz. Literal and Controllable Paraconsistency. Logic and Logical Philosophy. Online. 2 November 2024. pp. 1-19. [Accessed 4 July 2025]. DOI 10.12775/LLP.2024.027.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2024 Janusz Ciuciura

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 770
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

paraconsistent logic, Sette’s calculus, paraconsistency, paranormal logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop