Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Strong Kleene Logics as a Tool for Modelling Formal Epistemic Norms
  • Home
  • /
  • Strong Kleene Logics as a Tool for Modelling Formal Epistemic Norms
  1. Home /
  2. Archives /
  3. Vol. 33 No. 4 (2024): December /
  4. Articles

Strong Kleene Logics as a Tool for Modelling Formal Epistemic Norms

Authors

  • Agustina Borzi National Scientific and Technical Research Council, Department of Philosophy, University of Buenos Aires-CONICET https://orcid.org/0009-0008-4368-0444
  • Federico Pailos Department of Computer Sciences, University of Tübingen https://orcid.org/0000-0001-9991-2760
  • Joaquín T. Toranzo Calderón IIF-SADAF, National Scientific and Technical Research Council, Department of Philosophy, University of Buenos Aires; AI and Robotics Research Group, National University of Technology, Ciudad Autónoma de Buenos Aires https://orcid.org/0000-0003-1297-0912

DOI:

https://doi.org/10.12775/LLP.2024.029

Keywords

epistemic attitudes, formal commitments, bridge principles, three-valued logics, substructural logics

Abstract

In this paper, we present two ways of modelling every epistemic formal conditional commitment that involves (at most) three key epistemic attitudes: acceptance, rejection and neither acceptance nor rejection. The first one consists of adopting the plurality of every mixed Strong Kleene logic (along with an epistemic reading of the truth-values), and the second one involves the use of a unified system of six-sided inferences, named 6SK, that recovers the validities of each mixed Strong Kleene logic. We also introduce a sequent calculus that is sound and complete with respect to both approaches. We compare both accounts, and finally, we suggest that the plurality of Strong Kleene logic as well as the general framework 6SK are linked to formal epistemic norms via bridge principles.

References

Asenjo, F., “A calculus of antinomies”, Notre Dame Journal of Formal Logic, 7(1), 1966:103–105. DOI: https://doi.org/10.1305/ndjfl/1093958482

Belnap, N., “A useful four-valued logic”, pages 5–37 in Modern uses of multiple-valued logic, Springer, 1977. https://doi.org/DOI: 10.1007/978-94-010-1161-7_2

Chemla, E., and P. Egré, “Suszko’s problem: mixed consequence and compositionality”, Review of Symbolic Logic, 12(4), 2019: 736–767. DOI: https://doi.org/10.1017/S1755020318000503

Chemla, E., and P. Egré, “From many-valued consequence to many-valued connectives”, Synthese, 198(Suppl22), 2021: 5315–5352. DOI: https://doi.org/10.1007/s11229-019-02344-0

Chemla, E., P. Egré, and B. Spector, “Characterizing logical consequence in many-valued logics”, Journal of Logic and Computation, 27(7), 2017: 2193–2226. DOI: https://doi.org/10.1093/logcom/exx001

Cobreros, P., P. Egré, D. Ripley, and R. van Rooij, “Tolerant, classical, strict”, Journal of Philosophical Logic, 41(2), 2012: 347–385. DOI: https://doi.org/10.1007/s10992-010-9165-z

Cobreros, P., P. Egré, D. Ripley, and R. van Rooij, “Tolerant reasoning: nontransitive or nonmonotonic?”, Synthese, 199(S3), 2021: 681–705. DOI: https://doi.org/10.1007/s11229-017-1584-8

Francez, N., “Bilateralism, trilateralism, multilateralism and polysequents”, Journal of Philosophical Logic, 48(2), 2019: 245–262. DOI: https://doi.org/10.1007/s10992-018-9464-3

Frankowski, S., “Formalization of a plausible inference”, Bulletin of the Section of Logic, 33(1), 2004: 41–52.

Indrzejczak, A., Sequents and Trees. An Introduction to the Theory and Applications of Propositional Sequent Calculi, the book series “Studies in Universal Logic”, Birkhäuser: Heidelberg, 2021. DOI: https://doi.org/10.1007/978-3-030-57145-0

Kleene, S. C., Introduction to Metamathematics, North-Holland: Amsterdam, 1952.

MacFarlane, J., “In what sense (if any) is logic normative for thought?”, 2004. www.johnmacfarlane.net/normativity_of_logic.pdf

Malinowski, G., “Q-consequence operation”, Reports on Mathematical Logic, 24(1), 1990: 49–59.

Malinowski, G., “Kleene logic and inference”, Bulletin of the Section of Logic, 43(1/2), 2014: 43–52.

Pailos, F., “Disjoint logics”, Logic and Logical Philosophy, 30(1), 2021: 109–137. DOI: https://doi.org/10.12775/LLP.2020.014

Pailos, F., “On all pure three-valued logics”, Journal of Logic and Computation, 34(1), 2024: 161–179. DOI: https://doi.org/10.1093/logcom/exac087

Priest, G., “The logic of paradox”, Journal of Philosophical Logic, 8(1):219–241, 1979. DOI: https://doi.org/10.1007/BF00258428

Priest, G., In Contradiction: A Study of the Transconsistent, Oxford University Press, 2006. DOI: https://doi.org/10.1093/acprof:oso/9780199263301.001.0001

Restall, G., “Assertion, denial and non-classical theories”, pages 81–99 in F. Berto, E. Mares, K. Tanaka, and F. Paoli (eds.), Paraconsistency: Logic and Applications, Springer, 2013. DOI: https://doi.org/10.1007/978-94-007-4438-7_6

Ripley, D., “Conservatively extending classical logic with transparent truth”, Review of Symbolic Logic, 5(2), 2012: 354–378. DOI: https://doi.org/10.1017/S1755020312000056

Urbas, I., “Paraconsistency”, Studies in Soviet Thought, 39(3–4), 1990: 343–352. DOI: https://doi.org/10.1007/BF00838045

Logic and Logical Philosophy

Downloads

  • PDF

Published

2024-11-07

How to Cite

1.
BORZI, Agustina, PAILOS, Federico and TORANZO CALDERÓN, Joaquín T. Strong Kleene Logics as a Tool for Modelling Formal Epistemic Norms. Logic and Logical Philosophy. Online. 7 November 2024. Vol. 33, no. 4, pp. 615-648. [Accessed 5 July 2025]. DOI 10.12775/LLP.2024.029.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 No. 4 (2024): December

Section

Articles

License

Copyright (c) 2024 Agustina Borzi, Federico Pailos, Joaquín T. Toranzo Calderón

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 349
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

epistemic attitudes, formal commitments, bridge principles, three-valued logics, substructural logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop