Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

ZF-Class Nominalism and the Küng-Armstrong Trilemma: A Plea for Moderate Ineffabilism
  • Strona domowa
  • /
  • ZF-Class Nominalism and the Küng-Armstrong Trilemma: A Plea for Moderate Ineffabilism
  1. Strona domowa /
  2. Archiwum /
  3. Tom 33 Nr 2 (2024): Czerwiec /
  4. Artykuły

ZF-Class Nominalism and the Küng-Armstrong Trilemma

A Plea for Moderate Ineffabilism

Autor

  • Francesco Calemi University of Perugia https://orcid.org/0000-0001-5486-6035

DOI:

https://doi.org/10.12775/LLP.2024.005

Słowa kluczowe

class nominalism, ineffabilism, properties, set theory

Abstrakt

This paper will examine the Küng-Armstrong trilemma against Class Nominalism. We will see that combining Class Nominalism and Zermelo-Fraenkel set theory (ZF) can provide us with a sophisticated version of Class Nominalism, namely ZF-Class Nominalism, which successfully addresses the objection and leads to a moderate version of ineffabilism about the putative set-membership relation.

Bibliografia

Armstrong, D. M, (1978a), Nominalism and Realism, Vol. 1 of Universals and Scientific Realism, Cambridge University Press, Cambridge.

Armstrong, D. M., (1978b), A Theory of Universals, Vol. 2 of Universals and Scientific Realism, Cambridge University Press, Cambridge.

Armstrong, D. M., (1989), Universals: An Opinionated Introduction, Westview Press, Boulder. DOI: http://dx.doi.org/10.4324/9780429492617

Bernays, P., (1937), “A system of axiomatic set theory–part I”, The Journal of Symbolic Logic 2 (1): 65–77. DOI: http://dx.doi.org/10.1017/s0022481200040135

Blumson, B., (2019), “Naturalness and convex class nominalism”, Dialectica 73 (1-2): 65–81. DOI: http://dx.doi.org/10.1111/1746-8361.12263

Busse, R., (2016), “Class nominalism, wolterstorff’s objection, and combinatorial worlds”, Philosophical Quarterly 66 (265): 680–700. DOI: http://dx.doi.org/10.1093/pq/pqw016

Calemi, F. F., (2014), “The nominalist’s gambit and the structure of predication”, Metaphysica 15 (2): 313–327. DOI: http://dx.doi.org/10.1515/mp-2014-0019

Calemi, F. F., (2016), “Ostrich nominalism or ostrich platonism?”, pages 31–50 in F. F. Calemi (ed.), Metaphysics and Scientific Realism: Essays in Honour of David Malet Armstrong, De Gruyter, Boston/Berlin. DOI: http://dx.doi.org/10.1515/9783110455915-003

Enderton, H., (1977), Elements of Set Theory, Academic Press, New York. DOI: http://dx.doi.org/10.1016/C2009-0-22079-4

Frege, G., (1952), “On concept and object”, pages 42–55 in P. Geach and M. Black (eds.), Translations of the Philosophical Writings of Gottlob Frege, Blackwell, Oxford.

Gärdenfors, P., (2000), Conceptual Spaces: The Geometry of Thought, MIT Press, Cambridge, Mass. DOI: http://dx.doi.org/10.7551/mitpress/2076.001.0001

Garrett, B., (2003), What is This Thing Called Metaphysics?, N.Y.: Routledge. DOI: http://dx.doi.org/10.4324/9780203826232

Guigon, G., and G. Rodriguez-Pereyra, (2015), Nominalism About Properties: New Essays, New York, NY: Routledge. DOI: http://dx.doi.org/10.4324/9781315724874

Hofweber, T., (2016), Ontology and the Ambitions of Metaphysics, Ox ford, England: Oxford University Press UK. DOI: http://dx.doi.org/10.1093/acprof:oso/9780198769835.001.0001

Jech, T., (2002), Set Theory, Springer, Berlin. DOI: http://dx.doi.org/10.1007/3-540-44761-X

Jonas, S., (2016), Ineffability and its Metaphysics: The Unspeakable in Art, Religion, and Philosophy, New York, NY: Palgrave-Macmillan. DOI: http://dx.doi.org/10.1057/9781137579553

Kant, I., (1781), Critique of Pure Reason, St. Martins, New York.

Küng, G., (1967), Ontology and the Logistic Analysis of Language: An Enquiry into the Contemporary Views on Universals, Reidel, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-010-3514-9

Lewis, D., (1983), “New work for a theory of universals”, Australasian Journal of Philosophy 61: 343–377. DOI: http://dx.doi.org/10.1080/00048408312341131

Lewis, D., (1991), Parts of Classes, Blackwell, Oxford.

Mostowski, A., (1979), “Some impredicative definitions in the axiomatic settheory”, pages 479–492 in A. Mostowski (ed.), Foundational Studies Selected Works, Vol. 93 of Studies in Logic and the Foundations of Mathematics, Elsevier. DOI: http://dx.doi.org/10.1016/S0049-237X(09)70465-3

Potter, M., (2004), Set Theory and its Philosophy: A Critical Introduction, Oxford, England: Oxford University Press.

Priest, G., (2023), “On transcending the limits of language”, in J. Pier (ed.), Limits of Intelligibility: Issues from Kant and Wittgenstein, Routledge. DOI: http://dx.doi.org/10.4324/9781003142133

Quine, W. V. O., (1948), “On what there is”, Review of Metaphysics 2: 21–38. DOI: http://dx.doi.org/10.2307/j.ctv1c5cx5c.6

Quine, W. V. O., (1966), The Ways of Paradox, Random House, New York.

Schiffer, S., (1996), “Language-created, language-independent entities”, Philosophical Topics 24: 149–67. DOI: http://dx.doi.org/10.5840/philtopics199624117

Schnieder, B., (2006), “Attributing properties”, American Philosophical Quarterly 43 (4): 315–328.

Wittgenstein, L., (1961), Tractatus Logico-Philosophicus, Routledge & Kegan Paul, London. Translation by D. F. Pears and B. F. McGuinness; first published in 1921.

Wolterstorff, N., (1970), On Universals an Essay in Ontology, Chicago and London: University of Chicago Press.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

22.01.2024

Jak cytować

1.
CALEMI, Francesco. ZF-Class Nominalism and the Küng-Armstrong Trilemma: A Plea for Moderate Ineffabilism. Logic and Logical Philosophy [online]. 22 styczeń 2024, T. 33, nr 2, s. 205–-223. [udostępniono 7.7.2025]. DOI 10.12775/LLP.2024.005.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 33 Nr 2 (2024): Czerwiec

Dział

Artykuły

Licencja

Prawa autorskie (c) 2024 Francesco Calemi

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 600
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

class nominalism, ineffabilism, properties, set theory
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa