Logical Forms, Substitutions and Information Types
DOI:
https://doi.org/10.12775/LLP.2023.017Keywords
logical form, uniform substitution, information types, non-classical logicsAbstract
This paper explores the relation between the philosophical idea that logic is a science studying logical forms, and a mathematical feature of logical systems called the principle of uniform substitution, which is often regarded as a technical counterpart of the philosophical idea. We argue that at least in one interesting sense the principle of uniform substitution does not capture adequately the requirement that logic is a matter of form and that logical truths are formal truths. We show that some specific logical expressions can produce propositions of different kinds and the resulting diversity of informational types can lead to a justified failure of uniform substitution without undermining the view that logic is a purely formal discipline.
References
Carnap, R., 1946, “Modalities and quantification”, The Journal of Symbolic Logic, 11 (2): 33–64. DOI: http://dx.doi.org/10.2307/2268610
Carnap, R., 1947, Meaning and Necessity: A Study in Semantics and Modal Logic, The University of Chicago Press.
Ciardelli, I., and F. Roelofsen, 2011, “Inquisitive logic”, Journal of Philosophical Logic, 40 (1): 55–94. DOI: http://dx.doi.org/10.1007/s10992-010-9142-6
Ciardelli, I., J. Groenendijk and F. Roelofsen, 2019, Inquisitive Semantics, Oxford University Press. DOI: http://dx.doi.org/10.1093/oso/9780198814788.001.0001
Chargov, A., and M. Zakharyaschev, 1997, Modal Logic, Clarendon Press.
Font, J. M., 2016, Abstract Algebraic Logic, College Publications.
Holliday, W. H., T. Hoshi, T. F. Icard, 2012, “A uniform logic of information dynamics”, pages 348–367 in T. Bolander, T. Braüner, S. Ghilardi, and L. Moss (eds.), Advances in Modal Logic, Vol. 9, College Publications.
Makinson, D. (2003): “Bridges between Classical and Nonmonotonic Logic”, Logic Journal of IGPL, 11 (1): 69–96. DOI: http://dx.doi.org/10.1093/jigpal/11.1.69
Maksimova, L. L., V. B. Shetman and D. P. Skvortsov, 1979, “The impossibility of a finite axiomatization of Medvedev’s logic of finitary problems”, Soviet Mathematics Doklady, 20: 394–398.
Plaza, J. A., 1989, “Logics of public communications”, pages 201–216 in M. L. Emrich, M. S. Pfeifer, M. Hadzikadic and Z. W. Ras (eds.), Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, Oak Ridge National Laboratory.
Punčochář, V., 2016, “A generalization of inquisitive semantics”, Journal of Philosophical Logic, 45 (3): 399–428. DOI: http://dx.doi.org/10.1007/s10992-015-9379-1
Punčochář, V., 2022, “Iterated team semantics for a hierarchy of informational types”, Annals of Pure and Applied Logic, 173 (10): 103156. DOI: http://dx.doi.org/10.1016/j.apal.2022.103156
Schurz, G., 1995, “Most general first order theorems are not recursively enumerable”, Theoretical Computer Science, 147 (1–2): 149–163. DOI: http://dx.doi.org/10.1016/0304-3975(94)00229-C
Schurz, G., 2001, “Rudolf Carnap’s modal logic”, pages 365–380 in W. Stelzner and M. Stoeckler (eds.), Zwischen traditioneller und moderner Logik. Nichtklassische Ansätze, Mentis.
van Ditmarsch, H., W. van der Hoek and B. Kooi, 2007, Dynamic Epistemic Logic, Springer. DOI: http://dx.doi.org/10.1007/978-1-4020-5839-4
Veltman, F., 1985, “Logics for conditionals”, Doctoral dissertation, University of Amsterdam.
Wittgenstein, L., 1922, Tractatus Logico-Philosophicus, Routledge & Kegan Paul.
Yalcin, S., 2012, “A counterexample to modus tollens”, Journal of Philosophical Logic, 41 (6): 1001–1024. DOI: http://dx.doi.org/10.1007/s10992-012-9228-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vít Punčochář
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 444
Number of citations: 0