Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Some Remarks on the Logic of Probabilistic Relevance
  • Home
  • /
  • Some Remarks on the Logic of Probabilistic Relevance
  1. Home /
  2. Archives /
  3. Vol. 33 No. 1 (2024): March /
  4. Articles

Some Remarks on the Logic of Probabilistic Relevance

Authors

  • Davide Fazio Dipartimento di Scienze della Comunicazione, Università degli Studi di Teramo
  • Raffaele Mascella Dipartimento di Scienze della Comunicazione, Università degli Studi di Teramo

DOI:

https://doi.org/10.12775/LLP.2023.020

Keywords

relevance, statistical relevance, relevant implication, history of relating logic, connexive logic

Abstract

In this paper we deepen some aspects of the statistical approach to relevance by providing logics for the syntactical treatment of probabilistic relevance relations. Specifically, we define conservative expansions of Classical Logic endowed with a ternary connective ⇝ - indeed, a constrained material implication -  whose intuitive reading is “x materially implies y and it is relevant to y under the evidence z”. In turn, this ensures the definability of a formula in three-variables R(x, z, y) which is the representative of relevance in the object language. We outline the algebraic semantics of such logics, and we apply the acquired machinery to investigate some termdefined weakly connexive implications with some intuitive appeal. As a consequence, a further motivation of (weakly) connexive principles in terms of relevance and background assumptions obtains.

References

Anderson, A. R., and N. D. Belnap, Entailment: The Logic of Relevance and Necessity, Princeton University Press, 1975.

Burris, S., and H. P. Sankappanavar, A Course in Universal Algebra, Springer, 1981.

Carnap, R., Logical Foundations of Probability, The University of Chicago Press, 1950.

Czelakowski, J., “Equivalential logics I”, Studia Logica 45, 1981: 227–236. DOI: http://dx.doi.org/10.1007/BF02584057

Delgrande, J. P., and F. J. Pelletier, “A formal analysis of relevance”, Erkenntnis 49 (2), 1998: 137–173. DOI: http://dx.doi.org/10.1023/A:1005363424168

Dunn, J. M., “The relevance of relevance to relevance logic”, pages 11-20 in M. Banerjee and S. N. Krishna (eds.), Logic and Its Applications. ICLA 2015, Lecture Notes in Computer Science, vol. 8923, Springer, Berlin, Heidelberg, 2015. DOI: http://dx.doi.org/10.1007/978-3-662-45824-2_2

Džamonja, M., and G. Plebanek, “Strictly positive measures on Boolean algebras”, The Journal of Symbolic Logic 73 (4), 2008: 1416–1432.

Epstein, R. L., “Relatedness and implication”, Philosophical Studies 36: 137-–173. DOI: http://dx.doi.org/10.1007/BF00354267

Estrada-González, L., and C. L. Tanús-Pimentel, “Variable sharing in connexive logic”, Journal of Philosophical Logic 50, 2021: 1377–1388. DOI: http://dx.doi.org/10.1007/s10992-021-09602-y

Fazio, D., A. Ledda and F. Paoli, “Intuitionistic logic is a connexive logic”, Studia Logica, 2023. DOI: http://dx.doi.org/10.1007/s11225-023-10044-7

Floridi, L., “Understanding epistemic relevance”, Erkenntnis 69, 2008: 69–92. DOI: http://dx.doi.org/10.2139/ssrn.3844375

Font, J., Abstract Algebraic Logic: An Introductory Textbook, College Publications, 2016.

Gärdenfors, P., “On the logic of relevance”, Synthese 37, 1978: 351–367. DOI: http://dx.doi.org/10.1007/978-94-015-8208-7_3

Gärdenfors, P., “Belief revision and relevance”, pages 349–365 in PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 2, Symposia and Invited Papers, 1990. DOI: http://dx.doi.org/10.1086/psaprocbienmeetp.1990.2.193079

Givant, S., and P. Halmos, Introduction to Boolean Algebras, Springer, 2009.

Greisdorf, H., “Relevance: An interdisciplinary and information science perspective”, Informing Science 3 (2), 2000: 67–71. DOI: http://dx.doi.org/10.28945/579

Hempel, C., Aspects of Scientific Explanation, New York, Free Press, 1965.

Jansana, R., “On the deductive system of the order of an equationally orderable quasivariety”, Studia Logica 104 (3), 2016: 547–566. DOI: http://dx.doi.org/10.1007/s11225-016-9650-7

Jarmużek, T., and M. Klonowski, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer, 2020. DOI: http://dx.doi.org/10.1007/978-3-030-53487-5_3

Jarmużek, T., and M. Klonowski, “Axiomatization of BLRI determined by limited positive relational properties”, Logic and Logical Philosophy, 2022. DOI: http://dx.doi.org/10.12775/LLP.2022.003

Jarmużek, T., and F. Paoli, “Relating logic and relating semantics. History, philosophical applications and some of technical problems”, Logic and Logical Philosophy 30 (4), 2021: 563-–577. DOI: http://dx.doi.org/10.12775/LLP.2021.025

Kelley, J. L., “Measures on Boolean algebras”, Pacific Journal of Mathematics 9 (4), 1959: 1165–1177. DOI: http://dx.doi.org/10.2140/pjm.1959.9.1165

Keynes, J. M., A Treatise on Probability, Macmillan, London, 1921.

Kneale, W., and M. Kneale, The Development of Logic, Clarendon Press, 1962.

Kolmogorov, A. N., “Complete metric Boolean algebras”, Philosophical Studies 77 (1), 1995: 57–66. DOI: http://dx.doi.org/10.1007/BF00996311

Lewis, C. I., A Survey of Symbolic Logic, University of California Press, 1918.

Meyer,R. K., “New axiomatics for relevance logics, I”, Journal of Philosophical Logic 3, 1974: 53-–86. DOI: http://dx.doi.org/10.1007/BF00652071

Mizzaro, S., “How many relevances in information retrieval?”, Interacting with Computers 10, 1998: 303-–320. DOI: http://dx.doi.org/10.1016/S0953-5438(98)00012-5

Mortensen, C., “Aristotle’s thesis in consistent and inconsistent logics”, Studia Logica 43 (1–2), 1984: 107–116. DOI: http://dx.doi.org/10.1007/BF00935744

Mundici, D., Advanced Łukasiewicz Calculus and MV-Algebras, Springer, 2011.

Nelson, E. J., “Intensional relations”, Mind 39 (156), 1930: 440–453. DOI: http://dx.doi.org/10.1093/mind/XXXIX.156.440

Nola, R., and H. Sankey, Theories of Scientific Method, Routledge, 2006.

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufman, 1988.

Pearl, J., and A. Paz, “Graphoids: A graph-based logic for reasoning about relevance relations”, pages 357–363 in B. Du Boulay et al. (eds.), Advances in Artificial Intelligence, vol. II, Amsterdam, NorthHolland, 1987. DOI: http://dx.doi.org/10.1145/3501714.3501729

Priest, G., “Negation as cancellation and connexive logic”, Topoi 18, 1999: 141–148. DOI: http://dx.doi.org/10.1023/A:1006294205280

Routley, R., “Semantics for connexive logics, I”, Studia Logica 37 (4), 1978: 393–412. DOI: http://dx.doi.org/10.1007/BF02176171

Russell, B., Introduction to Mathematical Philosophy, London, George Allen and Unwin; New York: The Macmillan Company, 1919.

Salmon, W. C., “Confirmation and relevance”, pages 3–36 in G. Maxwell and R. M. Anderson, Jr. (eds.), Induction, Probability, and Confirmation, Minnesota Studies in the Philosophy of Science, University of Minnesota Press, Minneapolis, 1975.

Salmon, W. C., R. C. Jeffrey and J. G. Greeno, Statistical Explanation and Statistical Relevance, University of Pittsburgh Press, 1971. DOI: http://dx.doi.org/10.2307/j.ctt6wrd9p

Saracevic. T., “Relevance: A review of and a framework for the thinking on the notion in information science”, Journal of the American Society for Information Science 26, 1975: 321-–343. DOI: http://dx.doi.org/10.1002/asi.4630260604

Schlesinger, G. N., “Relevance”, Theoria 52, 1985: 57–67. DOI: http://dx.doi.org/10.1111/j.1755-2567.1986.tb00099.x

Van Der Awera, J., “Conditionals and antecedent possibilities”, Journal of Pragmatics 7 (3), 1983: 297–309. DOI: http://dx.doi.org/10.1016/0378-2166(83)90016-4

Wansing, H., “Connexive logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Spring 2021 edition. https://plato.stanford.edu/archives/spr2021/entries/logic-connexive

Wansing, H., and M. Unterhuber, “Connexive conditional logic. Part I”, Logic and Logical Philosophy 28, 2019: 567–610. DOI: http://dx.doi.org/10.12775/LLP.2018.018

Wilson, D., and D. Sperber, “Relevance theory”, pages 607–632 in L. R. Horn and G. Ward (eds.), The Handbook of Pragmatics, Blackwell, Oxford, 2004. DOI: http://dx.doi.org/10.1002/9780470756959.ch27

Logic and Logical Philosophy

Downloads

  • PDF

Published

2023-12-12

How to Cite

1.
FAZIO, Davide and MASCELLA, Raffaele. Some Remarks on the Logic of Probabilistic Relevance. Logic and Logical Philosophy. Online. 12 December 2023. Vol. 33, no. 1, pp. 101-144. [Accessed 8 July 2025]. DOI 10.12775/LLP.2023.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 No. 1 (2024): March

Section

Articles

License

Copyright (c) 2023 Davide Fazio, Raffaele Mascella

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 620
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

relevance, statistical relevance, relevant implication, history of relating logic, connexive logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop