Some Remarks on the Logic of Probabilistic Relevance
DOI:
https://doi.org/10.12775/LLP.2023.020Keywords
relevance, statistical relevance, relevant implication, history of relating logic, connexive logicAbstract
In this paper we deepen some aspects of the statistical approach to relevance by providing logics for the syntactical treatment of probabilistic relevance relations. Specifically, we define conservative expansions of Classical Logic endowed with a ternary connective ⇝ - indeed, a constrained material implication - whose intuitive reading is “x materially implies y and it is relevant to y under the evidence z”. In turn, this ensures the definability of a formula in three-variables R(x, z, y) which is the representative of relevance in the object language. We outline the algebraic semantics of such logics, and we apply the acquired machinery to investigate some termdefined weakly connexive implications with some intuitive appeal. As a consequence, a further motivation of (weakly) connexive principles in terms of relevance and background assumptions obtains.
References
Anderson, A. R., and N. D. Belnap, Entailment: The Logic of Relevance and Necessity, Princeton University Press, 1975.
Burris, S., and H. P. Sankappanavar, A Course in Universal Algebra, Springer, 1981.
Carnap, R., Logical Foundations of Probability, The University of Chicago Press, 1950.
Czelakowski, J., “Equivalential logics I”, Studia Logica 45, 1981: 227–236. DOI: http://dx.doi.org/10.1007/BF02584057
Delgrande, J. P., and F. J. Pelletier, “A formal analysis of relevance”, Erkenntnis 49 (2), 1998: 137–173. DOI: http://dx.doi.org/10.1023/A:1005363424168
Dunn, J. M., “The relevance of relevance to relevance logic”, pages 11-20 in M. Banerjee and S. N. Krishna (eds.), Logic and Its Applications. ICLA 2015, Lecture Notes in Computer Science, vol. 8923, Springer, Berlin, Heidelberg, 2015. DOI: http://dx.doi.org/10.1007/978-3-662-45824-2_2
Džamonja, M., and G. Plebanek, “Strictly positive measures on Boolean algebras”, The Journal of Symbolic Logic 73 (4), 2008: 1416–1432.
Epstein, R. L., “Relatedness and implication”, Philosophical Studies 36: 137-–173. DOI: http://dx.doi.org/10.1007/BF00354267
Estrada-González, L., and C. L. Tanús-Pimentel, “Variable sharing in connexive logic”, Journal of Philosophical Logic 50, 2021: 1377–1388. DOI: http://dx.doi.org/10.1007/s10992-021-09602-y
Fazio, D., A. Ledda and F. Paoli, “Intuitionistic logic is a connexive logic”, Studia Logica, 2023. DOI: http://dx.doi.org/10.1007/s11225-023-10044-7
Floridi, L., “Understanding epistemic relevance”, Erkenntnis 69, 2008: 69–92. DOI: http://dx.doi.org/10.2139/ssrn.3844375
Font, J., Abstract Algebraic Logic: An Introductory Textbook, College Publications, 2016.
Gärdenfors, P., “On the logic of relevance”, Synthese 37, 1978: 351–367. DOI: http://dx.doi.org/10.1007/978-94-015-8208-7_3
Gärdenfors, P., “Belief revision and relevance”, pages 349–365 in PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 2, Symposia and Invited Papers, 1990. DOI: http://dx.doi.org/10.1086/psaprocbienmeetp.1990.2.193079
Givant, S., and P. Halmos, Introduction to Boolean Algebras, Springer, 2009.
Greisdorf, H., “Relevance: An interdisciplinary and information science perspective”, Informing Science 3 (2), 2000: 67–71. DOI: http://dx.doi.org/10.28945/579
Hempel, C., Aspects of Scientific Explanation, New York, Free Press, 1965.
Jansana, R., “On the deductive system of the order of an equationally orderable quasivariety”, Studia Logica 104 (3), 2016: 547–566. DOI: http://dx.doi.org/10.1007/s11225-016-9650-7
Jarmużek, T., and M. Klonowski, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer, 2020. DOI: http://dx.doi.org/10.1007/978-3-030-53487-5_3
Jarmużek, T., and M. Klonowski, “Axiomatization of BLRI determined by limited positive relational properties”, Logic and Logical Philosophy, 2022. DOI: http://dx.doi.org/10.12775/LLP.2022.003
Jarmużek, T., and F. Paoli, “Relating logic and relating semantics. History, philosophical applications and some of technical problems”, Logic and Logical Philosophy 30 (4), 2021: 563-–577. DOI: http://dx.doi.org/10.12775/LLP.2021.025
Kelley, J. L., “Measures on Boolean algebras”, Pacific Journal of Mathematics 9 (4), 1959: 1165–1177. DOI: http://dx.doi.org/10.2140/pjm.1959.9.1165
Keynes, J. M., A Treatise on Probability, Macmillan, London, 1921.
Kneale, W., and M. Kneale, The Development of Logic, Clarendon Press, 1962.
Kolmogorov, A. N., “Complete metric Boolean algebras”, Philosophical Studies 77 (1), 1995: 57–66. DOI: http://dx.doi.org/10.1007/BF00996311
Lewis, C. I., A Survey of Symbolic Logic, University of California Press, 1918.
Meyer,R. K., “New axiomatics for relevance logics, I”, Journal of Philosophical Logic 3, 1974: 53-–86. DOI: http://dx.doi.org/10.1007/BF00652071
Mizzaro, S., “How many relevances in information retrieval?”, Interacting with Computers 10, 1998: 303-–320. DOI: http://dx.doi.org/10.1016/S0953-5438(98)00012-5
Mortensen, C., “Aristotle’s thesis in consistent and inconsistent logics”, Studia Logica 43 (1–2), 1984: 107–116. DOI: http://dx.doi.org/10.1007/BF00935744
Mundici, D., Advanced Łukasiewicz Calculus and MV-Algebras, Springer, 2011.
Nelson, E. J., “Intensional relations”, Mind 39 (156), 1930: 440–453. DOI: http://dx.doi.org/10.1093/mind/XXXIX.156.440
Nola, R., and H. Sankey, Theories of Scientific Method, Routledge, 2006.
Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufman, 1988.
Pearl, J., and A. Paz, “Graphoids: A graph-based logic for reasoning about relevance relations”, pages 357–363 in B. Du Boulay et al. (eds.), Advances in Artificial Intelligence, vol. II, Amsterdam, NorthHolland, 1987. DOI: http://dx.doi.org/10.1145/3501714.3501729
Priest, G., “Negation as cancellation and connexive logic”, Topoi 18, 1999: 141–148. DOI: http://dx.doi.org/10.1023/A:1006294205280
Routley, R., “Semantics for connexive logics, I”, Studia Logica 37 (4), 1978: 393–412. DOI: http://dx.doi.org/10.1007/BF02176171
Russell, B., Introduction to Mathematical Philosophy, London, George Allen and Unwin; New York: The Macmillan Company, 1919.
Salmon, W. C., “Confirmation and relevance”, pages 3–36 in G. Maxwell and R. M. Anderson, Jr. (eds.), Induction, Probability, and Confirmation, Minnesota Studies in the Philosophy of Science, University of Minnesota Press, Minneapolis, 1975.
Salmon, W. C., R. C. Jeffrey and J. G. Greeno, Statistical Explanation and Statistical Relevance, University of Pittsburgh Press, 1971. DOI: http://dx.doi.org/10.2307/j.ctt6wrd9p
Saracevic. T., “Relevance: A review of and a framework for the thinking on the notion in information science”, Journal of the American Society for Information Science 26, 1975: 321-–343. DOI: http://dx.doi.org/10.1002/asi.4630260604
Schlesinger, G. N., “Relevance”, Theoria 52, 1985: 57–67. DOI: http://dx.doi.org/10.1111/j.1755-2567.1986.tb00099.x
Van Der Awera, J., “Conditionals and antecedent possibilities”, Journal of Pragmatics 7 (3), 1983: 297–309. DOI: http://dx.doi.org/10.1016/0378-2166(83)90016-4
Wansing, H., “Connexive logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Spring 2021 edition. https://plato.stanford.edu/archives/spr2021/entries/logic-connexive
Wansing, H., and M. Unterhuber, “Connexive conditional logic. Part I”, Logic and Logical Philosophy 28, 2019: 567–610. DOI: http://dx.doi.org/10.12775/LLP.2018.018
Wilson, D., and D. Sperber, “Relevance theory”, pages 607–632 in L. R. Horn and G. Ward (eds.), The Handbook of Pragmatics, Blackwell, Oxford, 2004. DOI: http://dx.doi.org/10.1002/9780470756959.ch27
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Davide Fazio, Raffaele Mascella
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 534
Number of citations: 0