Relating Semantics for Hyper-Connexive and Totally Connexive Logics
DOI:
https://doi.org/10.12775/LLP.2023.011Keywords
Abelardian axiom, Boolean connexive logics, hyper-connexivity, relating semantics, totally connexive logicsAbstract
In this paper we present a characterization of hyper-connexivity by means of a relating semantics for Boolean connexive logics. We also show that the minimal Boolean connexive logic is Abelardian, strongly consistent, Kapsner strong and antiparadox. We give an example showing that the minimal Boolean connexive logic is not simplificative. This shows that the minimal Boolean connexive logic is not totally connexive.
References
Estrada-González, L., and E. Ramírez-Cámara, 2016, “A comparison of connexive logics”, IFCoLog Journal of Logics and their Applications, 3 (3): 341–355.
Estrada-González, L., and E. Ramírez-Cámara, 2020, “A Nelsonian response to ‘the Most Embarrassing of All Twelfth-century Arguments’ ”, History and Philosophy of Logic, 41 (2): 101–113. DOI: https://doi.org/10.1080/01445340.2019.1656992
Estrada-González, L., and C. L. Tanús-Pimentel, 2021, “Variable sharing in connexive logic”, Journal of Philosophical Logic, 50: 1377–1388. DOI: https://doi.org/10.1007/s10992-021-09602-y
Jarmużek, T., 2021, “Relating semantics as fine-grained semantics for intensional logics”, pages 13–30 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Current Issues in Logical Semantics, vol. 56, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-53487-5_2
Jarmużek, J., and M. Klonowski, 2020, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Current Issues in Logical Semantics, vol. 56, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-53487-5_3
Jarmużek, T., and M. Klonowski, 2022, “Axiomatization of BLRI determined by limited positive relational properties”, Logic and Logical Philosophy. DOI: https://doi.org/10.12775/LLP.2022.003
Jarmużek, T., and J. Malinowski, 2019, “Boolean connexive logics: semantics and tableau approach”, Logic and Logical Philosophy, 28 (3): 427–448. DOI: https://doi.org/10.12775/LLP.2019.003
Kapsner, A., and H. Omori, 2017, “Counterfactuals in Nelson logic”, pages 497–511 in A. Baltag, J. Seligman and T. Yamada (eds.), LORI 2017 – Logic, Rationality, and Interaction: 6th International Workshop, vol. 10455, Berlin: Springer. DOI: https://doi.org/10.1007/978-3-662-55665-8_34
Klonowski, M., 2019, “Aksjomatyzacja monorelacyjnych logik wiążących” (Axiomatization of monorelational relating logics), PhD Thesis, Nicolaus Copernicus University in Toruń.
Klonowski, M., 2021, “Axiomatization of some basic and modal Boolean connexive logics”, Logica Universalis, 15: 517–536. DOI: https://doi.org/10.1007/s11787-021-00291-4
Klonowski, M. 2021, “History of relating logic. The origin and research directions”, Logic and Logical Philosophy, 30 (4): 579—629. DOI: https://doi.org/10.12775/LLP.2021.021
McCall, S., 2012, “A history of connexivity”, pages 415–449 in D. M. Gabbay, F. J. Pelletier and J. Woods (eds.), Handbook of the History of Logic, vol. 11, Logic: A History of its Central Concepts, Amsterdam: Elsevier. DOI: https://doi.org/10.1016/B978-0-444-52937-4.50008-3
Malinowski, J., and R. Palczewski, 2020, “Relating semantics for connexive logic”, pages 49–65 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Current Issues in Logical Semantics, vol. 56, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-53487-5_4
Omori, H., and H. Wansing, 2020, “An extension of connexive logic C”, pages 503–522 in N. Olivietti, R. Verbrugge, S. Negri and G. Sandu (eds.), Advances in Modal Logic, vol. 13, College Publications.
Sylvan, R., 1989, “A preliminary western history of sociative logics”, pages 72–140 in Bystanders’ Guide to Sociative Logics, Canberra: Australian National University. Reprint with minor modifications, pages 53–138 in D. Hyde and G. Priest (eds.), Sociative Logics and Their Applications: Essays by the Late Richard Sylvan, Ashgate, 2000.
Wansing, H., 2005, “Connexive modal logic”, pages 367–383 in R. Schmidt, I. Pratt-Hartmann, M. Reynolds and H. Wansing (eds.), Advances in Modal Logic, vol. 5, London: College Publications.
Wansing, H., 2007, “A note on negation in categorial grammar”, Logic Journal of the IGPL, 15 (3): 271–286. DOI: https://doi.org/10.1093/jigpal/jzm012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jacek Malinowski, Ricardo Arturo Nicolás-Francisco
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1452
Number of citations: 0