Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Constructive Logic is Connexive and Contradictory
  • Home
  • /
  • Constructive Logic is Connexive and Contradictory
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Constructive Logic is Connexive and Contradictory

Authors

  • Heinrich Wansing Department of Philosophy I, Ruhr University Bochum https://orcid.org/0000-0002-0749-8847

DOI:

https://doi.org/10.12775/LLP.2024.001

Keywords

constructive logic, connexive logic, contradictory logics, Drinker principle, Drinker truism, Brouwer-Heyting-Kolmogorov interpretation

Abstract

It is widely accepted that there is a clear sense in which the first-order paraconsistent constructive logic with strong negation of Almukdad and Nelson, QN4, is more constructive than intuitionistic first-order logic, QInt. While QInt and QN4 both possess the disjunction property and the existence property as characteristics of constructiveness (or constructivity), QInt lacks certain features of constructiveness enjoyed by QN4, namely the constructible falsity property and the dual of the existence property.

This paper deals with the constructiveness of the contra-classical, connexive, paraconsistent, and contradictory non-trivial first-order logic QC, which is a connexive variant of QN4. It is shown that there is a sense in which QC is even more constructive than QN4. The argument focuses on a problem that is mirror-inverted to Raymond Smullyan’s drinker paradox, namely the invalidity of what will be called the drinker truism and its dual in QN4 (and QInt), and on a version of the Brouwer-Heyting-Kolmogorov interpretation of the logical operations that treats proofs and disproofs on a par. The validity of the drinker truism and its dual together with the greater constructiveness of QC in comparison to QN4 may serve as further motivation for the study of connexive logics and suggests that constructive logic is connexive and contradictory (the latter understood as being negation inconsistent).

Author Biography

Heinrich Wansing, Department of Philosophy I, Ruhr University Bochum

Department of Philosophy I, Logic and Epistemology

References

Almukdad, A., and Nelson, D., “Constructible falsity and inexact predicates”, The Journal of Symbolic Logic 49 (1984): 231–233. DOI: http://dx.doi.org/10.2307/ 2274105

Beth, E. W., Aspects of Modern Logic, Reidel, Dordrecht, 1970.

Buss, S., “An introduction to proof theory”, pages 1–78 in S. Buss (ed.), Handbook of Proof Theory, Elsevier, Amsterdam, 1998.

Casari, E., “Intermediate logics”, Atti degli incontri di Logica Matametica 1 (1982): 243–298.

van Dalen, D., Logic and Structure, 4th ed., Springer, Heidelberg, 2004

Fazio, D., A. Ledda, and P. Paoli, “Intuitionistic logic is a connexive logic”, Studia Logica (2023). DOI: http://dx.doi.org/10.1007/s11225-023-10044-7

Ferguson, T. M., “Negation in negationless intuitionistic mathematics”, Philosophia Mathematica (2022). DOI: http://dx.doi.org/10.1093/philmat/nkac026

Francez, N., A View of Connexive Logic, College Publications, London, 2021.

Girard, J.-Y., Proofs and Types, translated and with appendices by P. Taylor and Y. Lafont, Cambridge University Press, Cambridge, 1989.

Goranko, V., G. Pulcini, and T. Skura, “Refutation systems: An overview and some applications to philosophical logics”, pages 173–197 in F. Liu, H. Ono, and J. Yu (eds.), Knowledge, Proof and Dynamics. The Fourth Asian Workshop on Philosophical Logic, Springer, Cham, 2020.

Johansson, I., “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compositio Mathematica 4 (1930): 119–136.

Komori, Y., ‘Some results on the super-intuitionistic predicate logics”, Reports on Mathematical Logic 15 (1983): 13–31.

López-Escobar, E. G. K., “Refutability and elementary number theory”, Indigationes Mathematicae 34 (1972), 362–374. DOI: http://dx.doi.org/10.1016/1385-7258(72)90053-4

McCall, S., “A history of connexivity”, pages 415–449 in D. Gabbay, F. Pelletier, and J. Woods (eds.), Handbook of the History of Logic, Vol. 11, Elsevier, Amsterdam, 2012.

Nakamura, T., “Disjunction property for some intermediate predicate logics”, Reports on Mathematical Logic 15 (1983), 33–39.

Odintsov, S. P., Constructive Negations and Paraconsistency, Springer, Dordrecht, 2008.

Odintsov, S. P., and H. Wansing, “Inconsistency-tolerant description logic. Motivation and basic systems”, pages 301–335 in V. Hendricks and J. Malinowski (eds.), Trends in Logic. 50 Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, 2003. DOI: http://dx.doi.org/10.1007/978-94-017-3598-8

Omori, H., and H. Wansing, “An extension of connexive logic C”, pages 503–522 in S. Negri et al., (eds.), Advances in Modal Logic, Vol. 13, College Publications, London, 2020.

Ono, H., “Some problems in intermediate predicate logics”, Reports on Mathematical Logic 21 (1987): 55–67; Supplement 22 (1988): 117–118.

Prawitz, D., Natural Deduction: A Proof-theoretical Study, Almqvist & Wiksell, Stockholm, 1965. Reprinted with Dover Publications, 2006.

Smullyan, R., What is the Name of this Book? The Riddle of Dracula and Other Logical Puzzles, Prentice-Hall, Englewood Cliffs, 1978.

Troelstra, A., and D. van Dalen, Constructivism in Mathematics. An Introduction, Elsevier, Amsterdam, 1988.

Vredenduin, P. G. J., “The logic of negationless mathematics”, Compositio Mathematica 11 (1953): 204–270.

von Kutschera, F., “Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle”, Archiv für mathematische Logik und Grundlagenforschung 12 (1969): 104–118. DOI: http://dx.doi.org/10.1007/BF01969697

Wansing, H., The Logic of Information Structures, Springer Lecture Notes in AI 681, Springer, Berlin, 1993.

Wansing, H., “Negation”, pages 415–436 in L. Goble (ed.), The Blackwell Guide to Philosophical Logic, Basil Blackwell Publishers, Cambridge/MA, 2001.

Wansing, H., “Connexive modal logic”, pages 367–383 in R. Schmidt et al. (eds.), Advances in Modal Logic, Vol. 5, King’s College Publications, London, 2005. http://www.aiml.net/volumes/volume5/

Wansing, H., “One heresy and one orthodoxy: On dialetheism, dimathematism, and the non-normativity of logic”, Erkenntnis (2022). DOI: http://dx.doi.org/10. 1007/s10670-022-00528-8

Wansing, H., ”Connexive logic”, The Stanford Encyclopedia of Philosophy (Summer 2023 Edition), E. N. Zalta and U. Nodelman (eds.). https://plato.stanford.edu/archives/sum2023/entries/logic-connexive/

Wansing, H., “A note on synonymy in proof-theoretic semantics”, to appear in T. Piecha and K. Wehmeier (eds.), Peter Schroeder-Heister on Proof-theoretic Semantics, Springer, Cham, 2024.

Wansing, H., and S. Ayhan, “Logical mutilateralism”, Journal of Philosophical Logic, 52 (2023): 1603–1636. DOI: http://dx.doi.org/10.1007/s10992-023-09720-9

Warren, L., H. Diener, and M. McKubre-Jordens, “The Drinker paradox and its dual”, 2018. DOI: http://dx.doi.org/10.48550/arXiv.1805.06216

Downloads

  • PDF

Published

2024-01-02

How to Cite

1.
WANSING, Heinrich. Constructive Logic is Connexive and Contradictory. Logic and Logical Philosophy. Online. 2 January 2024. pp. 1-27. [Accessed 17 May 2025]. DOI 10.12775/LLP.2024.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2024 Heinrich Wansing

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1528
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

constructive logic, connexive logic, contradictory logics, Drinker principle, Drinker truism, Brouwer-Heyting-Kolmogorov interpretation
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop