Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Contradictions in Multiverse: Translation of Paraconsistent Logic daC into Many-Sorted Logic
  • Home
  • /
  • Contradictions in Multiverse: Translation of Paraconsistent Logic daC into Many-Sorted Logic
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Contradictions in Multiverse

Translation of Paraconsistent Logic daC into Many-Sorted Logic

Authors

  • Julian Mauricio Valdes-Toro Episteme Research Group, Universidad de Salamanca, and Universidad del Valle, Cali, Colombia https://orcid.org/0000-0002-8972-5061

DOI:

https://doi.org/10.12775/LLP.2025.018

Keywords

translation, paraconsistent logic, logic daC, many-sorted logic

Abstract

A translation of Priest’s paraconsistent logic daC into many-sorted logic is presented. Besides, following the project of (Manzano, 1996), the representation theorem, the main theorem and the calculi equivalence are proved. So, it is demonstrated that the formulated translation preserves the set of valid formulas, the consequence relation, and the derivation relation of daC. Furthermore, the compactness and Löwenheim-Skolem theorems are proved for this logic. Alternative proofs for the soundness and completeness theorems for daC based on the translation are also presented.

References

Carnielli, W., M. Coniglio, and I. D’Ottaviano, 2009, “New dimensions on translatios between logics”, Logica Universalis, 3: 1–18. DOI: https://doi.org/10.1007/s11787-009-0002-5

Ferguson, T., 2013, “Extensions of Priest–da Costa Logic”, Studia Logica, 102(1): 145–174.DOI: https://doi.org/10.1007/s11225-013-9469-4

Ferguson T., 2018, “Axiom (cc)0 and verifiability in two extracanonical logics of formal inconsistency”, Principia, 22(1): 113–138. DOI: https://doi.org/10.5007/1808-1711.2018v22n1p113

Kolmogorov, A., 1925, “On the principle of excluded middle”, pages 414–437 in J. Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Harvard University Press, 1977.

Manzano, M., 1989, Teoría de modelos, Alianza.

Manzano, M., 1996, Extensions of First Order Logic, Cambridge University Press.

Manzano, M., 2004, “Divergencia y rivalidad entre lógicas”, pages 277–312 in R. Orayen and A. Moretti (eds.), Enciclopedia Iberoamericana de filosofía, Vol. 27, Filosofía de la Lógica, Trotta.

Manzano, M., and V. Aranda, 2022, “Many-sorted logic”, in E. N. Zalta and U. Nodelman (eds.), The Stanford Encyclopedia of Philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/logic-many-sorted/

Ohlbach, H., A. Nonnengart, M. de Rijke, and D. M. Gabbay, 2001, “Encoding two-valued nonclassical logics in classical logic”, pages 1403–1486 in A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier. DOI: https://doi.org/10.1016/B978-044450813-3/50023-0

Osorio Galindo, M., V. Borja Macías, and J. Arrazola Ramírez, 2016, "Revisiting da Costa logic”, Journal of Applied Logic, 16: 111–127. DOI: https://doi.org/10.1016/j.jal.2016.02.004

Priest, G., 2009. “Dualising intuitionistic negation”, Principia (13), 2: 165–184. DOI: https://doi.org/10.5007/1808-1711.2009v13n2p165

Priest, G., 2010, “First order da Costa logic”, Studia Logica 97: 183–198. DOI: https://doi.org/10.1007/s11225-010-9303-1

Shen, Y., Y. Ma, C. Cao, Y. Sui, and J. Wang, 2010, “Preservative translations between logical systems”, pages 55–63 in Z. Shi, S. Vadera, A. Aamodt and D. Leake (eds.), Intelligent Information Processing V. 6th IFIP TC 12 International Conference, IIP 2010, Manchester, UK, October 13–16, 2010, Proceedings, Springer. DOI: https://doi.org/10.1007/978-3-642-16327-2

van Benthem, J., 1983, Modal Logic and Classical Logic, Bibliopolis. DOI: https://doi.org/10.2307/2274406

van Benthem, J., 2001, “Correspondence theory”, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Second Edition, Vol. 3, Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-017-0454-0_4

Downloads

  • PDF

Published

2025-09-12

How to Cite

1.
VALDES-TORO, Julian Mauricio. Contradictions in Multiverse: Translation of Paraconsistent Logic daC into Many-Sorted Logic. Logic and Logical Philosophy. Online. 12 September 2025. pp. 1-37. [Accessed 18 November 2025]. DOI 10.12775/LLP.2025.018.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2025 Julian Mauricio Valdes-Toro

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 241
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

translation, paraconsistent logic, logic daC, many-sorted logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop