Contradictions in Multiverse
Translation of Paraconsistent Logic daC into Many-Sorted Logic
DOI:
https://doi.org/10.12775/LLP.2025.018Keywords
translation, paraconsistent logic, logic daC, many-sorted logicAbstract
A translation of Priest’s paraconsistent logic daC into many-sorted logic is presented. Besides, following the project of (Manzano, 1996), the representation theorem, the main theorem and the calculi equivalence are proved. So, it is demonstrated that the formulated translation preserves the set of valid formulas, the consequence relation, and the derivation relation of daC. Furthermore, the compactness and Löwenheim-Skolem theorems are proved for this logic. Alternative proofs for the soundness and completeness theorems for daC based on the translation are also presented.
References
Carnielli, W., M. Coniglio, and I. D’Ottaviano, 2009, “New dimensions on translatios between logics”, Logica Universalis, 3: 1–18. DOI: https://doi.org/10.1007/s11787-009-0002-5
Ferguson, T., 2013, “Extensions of Priest–da Costa Logic”, Studia Logica, 102(1): 145–174.DOI: https://doi.org/10.1007/s11225-013-9469-4
Ferguson T., 2018, “Axiom (cc)0 and verifiability in two extracanonical logics of formal inconsistency”, Principia, 22(1): 113–138. DOI: https://doi.org/10.5007/1808-1711.2018v22n1p113
Kolmogorov, A., 1925, “On the principle of excluded middle”, pages 414–437 in J. Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Harvard University Press, 1977.
Manzano, M., 1989, Teoría de modelos, Alianza.
Manzano, M., 1996, Extensions of First Order Logic, Cambridge University Press.
Manzano, M., 2004, “Divergencia y rivalidad entre lógicas”, pages 277–312 in R. Orayen and A. Moretti (eds.), Enciclopedia Iberoamericana de filosofía, Vol. 27, Filosofía de la Lógica, Trotta.
Manzano, M., and V. Aranda, 2022, “Many-sorted logic”, in E. N. Zalta and U. Nodelman (eds.), The Stanford Encyclopedia of Philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/logic-many-sorted/
Ohlbach, H., A. Nonnengart, M. de Rijke, and D. M. Gabbay, 2001, “Encoding two-valued nonclassical logics in classical logic”, pages 1403–1486 in A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier. DOI: https://doi.org/10.1016/B978-044450813-3/50023-0
Osorio Galindo, M., V. Borja Macías, and J. Arrazola Ramírez, 2016, "Revisiting da Costa logic”, Journal of Applied Logic, 16: 111–127. DOI: https://doi.org/10.1016/j.jal.2016.02.004
Priest, G., 2009. “Dualising intuitionistic negation”, Principia (13), 2: 165–184. DOI: https://doi.org/10.5007/1808-1711.2009v13n2p165
Priest, G., 2010, “First order da Costa logic”, Studia Logica 97: 183–198. DOI: https://doi.org/10.1007/s11225-010-9303-1
Shen, Y., Y. Ma, C. Cao, Y. Sui, and J. Wang, 2010, “Preservative translations between logical systems”, pages 55–63 in Z. Shi, S. Vadera, A. Aamodt and D. Leake (eds.), Intelligent Information Processing V. 6th IFIP TC 12 International Conference, IIP 2010, Manchester, UK, October 13–16, 2010, Proceedings, Springer. DOI: https://doi.org/10.1007/978-3-642-16327-2
van Benthem, J., 1983, Modal Logic and Classical Logic, Bibliopolis. DOI: https://doi.org/10.2307/2274406
van Benthem, J., 2001, “Correspondence theory”, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Second Edition, Vol. 3, Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-94-017-0454-0_4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julian Mauricio Valdes-Toro

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 241
Number of citations: 0