Relational Semantics for the Paraconsistent and Paracomplete 4-valued Logic PŁ4
DOI:
https://doi.org/10.12775/LLP.2022.016Keywords
paraconsistent logics, paracomplete logics, 4-valued logics, modal 4-valued logics, Routley-Meyer semantics, binary Routley semantics, 2 set-up Routley-Meyer semantics, 2 set-up binary Routley semanticsAbstract
The paraconsistent and paracomplete 4-valued logic PŁ4 is originally interpreted with a two-valued Belnap-Dunn semantics. In the present paper, PŁ4 is endowed with both a ternary Routley-Meyer semantics and a binary Routley semantics together with their respective restriction to the 2 set-up cases.
References
Béziau, J.-Y., “A new four-valued approach to modal logic”, Logique et Analyse, 54, 213 (2011): 109–121.
Brady, R. T., “Completeness proofs for the systems RM3 and BN4”, Logique et Analyse, 25 (1982): 9–32.
Brady, R. T. (ed.), Relevant Logics and Their Rivals, vol. II, Ashgate, Aldershot, 2003.
De, M., and H. Omori, “Classical negation and expansions of Belnap-Dunn logic”, Studia Logica, 103, 4 (2015): 825–851. DOI: http://dx.doi.org/10.1007/s11225-014-9595-7
Kamide, N., and H. Omori, “An extended first-order Belnap-Dunn logic with classical negation”, pages 79–93 in A. Baltag, J. Seligman and T. Yamada (eds.), Logic, Rationality, and Interaction, Springer, 2017. DOI: http://dx.doi.org/10.1007/978-3-662-55665-8_6
Łukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Clarendon Press, Oxford, 1951.
Łukasiewicz, J., “A system of modal logic”, The Journal of Computing Systems, 1 (1953): 111–149.
Méndez, J. M., and G. Robles, “A strong and rich 4-valued modal logic without Łukasiewicz-type paradoxes”, Logica Universalis, 9, 4 (2015): 501–522. DOI: http://dx.doi.org/10.1007/s11787-015-0130-z
Méndez, J. M., G. Robles and F. Salto, “An interpretation of Łukasiewicz’s 4-valued modal logic”, Journal of Philosophical Logic, 45, 1 (2016), 73–87. DOI: http://dx.doi.org/10.1007/s10992-015-9362-x
Robles, G., and J. M. Méndez, “A binary Routley semantics for intuitionistic De Morgan minimal logic HM and its extensions”, Logic Journal of the IGPL, 23, 2 (2015): 174–193. DOI: http://dx.doi.org/10.1093/jigpal/jzu029
Robles, G., and J. M. Méndez, Routley-Meyer Ternary Relational Semantics for Intuitionistic-Type Negations, Elsevier, 2018.
Robles, G., S. M. López, J. M. Blanco, M. M. Recio and J. R. Paradela, “A 2-set-up Routley-Meyer semantics for the 4-valued relevant logic E4”, Bulletin of the Section of Logic, 45, 2 (2016): 93–109. DOI: http://dx.doi.org/10.18778/0138-0680.45.2.03
Routley, R., R. K. Meyer, V. Plumwood and R. T. Brady, Relevant Logics and their Rivals, vol. 1, Atascadero, CA: Ridgeview Publishing Co., 1982.
Slaney, J. K., MaGIC, Matrix Generator for Implication Connectives: Version 2.1, Notes and Guide, Canberra: Australian National University, 1995. users.cecs.anu.edu.au/jks/magic.html (27/01/2021).
Zaitsev, D., “Generalized relevant logic and models of reasoning” (doctoral dissertation), Moscow State Lomonosov University, 2012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gemma Robles, Sandra M. López, José M. Blanco
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1183
Number of citations: 0