Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Future Contingencies and the Arrow and Flow of Time in a Non-Deterministic World According to the Temporal-Modal System TM
  • Strona domowa
  • /
  • Future Contingencies and the Arrow and Flow of Time in a Non-Deterministic World According to the Temporal-Modal System TM
  1. Strona domowa /
  2. Archiwum /
  3. Tom 32 Nr 4 (2023): Grudzień /
  4. Artykuły

Future Contingencies and the Arrow and Flow of Time in a Non-Deterministic World According to the Temporal-Modal System TM

Autor

  • Miloš Arsenijević Faculty of Philosophy, University of Belgrade https://orcid.org/0000-0003-0717-6407
  • Andrej Jandrić Faculty of Philosophy, University of Belgrade https://orcid.org/0000-0003-2507-5650

DOI:

https://doi.org/10.12775/LLP.2023.001

Słowa kluczowe

sea-battle puzzle, tenses, in-the-world-inherent modalities, indeterminism, the arrow of time, the flow of time

Abstrakt

It is shown how the temporal-modal system of events TM (axiomatized in Appendix) allows for the avoidance of the logical determinism without the rejection of the principle of bivalence. The point is that the temporal and the modal parts of TM are so inter-related that modalities are in-the-real-world-inherent modalities independently of whether they concern actual or only possible events. Though formulated in a tenseless language, whose interpretation does not require the assumption of tense facts at the basic level of reality, TM implies an objective, observer-independent difference between tenses based only on the way in which modalities are distributed along the time continuum. The conclusion is that the arrow of time is an intra-model characteristic of any model of TM that describes the non-deterministic real world up to a certain point of its history, while the flow of time is an inter-model characteristic of the continuous transition between these models.

Bibliografia

Aristotle, 1831, De Interpretatione, in Opera, ed. Bekkeri, Walter de Gruyter, Berlin.

Arsenijević, M., 2002, “Determinism, indeterminism and the flow of time”, Erkenntnis 56 (2): 123–150. DOI: http://dx.doi.org/10.1023/a:1015646303123

Arsenijević, M., 2003a, “Generalized concepts of syntactically and semantically trivial differences and instant-based and period-based time ontologies”, Journal of Applied Logic 1: 1–12. DOI: http://dx.doi.org/10.1016/s1570-8683(03)00002-8

Arsenijević, M., 2003b, “Real tenses”, pages 325–354 in A. Jokić and Q. Smith (eds.), Time, Tense, and Reference, MIT Press, Cambridge Mass.

Arsenijević, M., 2016, “Avoiding logical determinism and retaining the principle of bivalence within temporal modal logic: Time as a line-in-drawing”, pages 37–78 in S. Gerogiorgakis (ed.), Time and Tense. Unifying the Old and the New, Philosophia, Munich. DOI: http://dx.doi.org/10.2307/j.ctv2nrzj53.4

Arsenijević, M., and M. Adžić, 2014, “Gunkology and pointilism: Two mutually supervening models of the region-based and the point-based theory of the infinite two-dimensional continuum”, pages 137–170 in V. Fano, F. Orilia and G. Macchia (eds.), Space and Time. A Priori and a Posteriori Studies, De Gruyter, Berlin. DOI: http://dx.doi.org/10.1515/9783110348927.137

Arsenijević, M., and M. Kapetanović, 2008a, “The ‘great struggle’ between Cantorians and neo-Aristotelians: Much ado about nothing”, Grazer Philosophische Studien 76 (1): 79–90. DOI: http://dx.doi.org/10.1163/9789401206020_004

Arsenijević, M., and M. Kapetanović, 2008b, “An Lω1ω1 axiomatization of the linear Archimedean continua as merely relational structures”, WSEAS Transactions on Mathematics 7: 39–47.

Belnap, N., 1992, “Branching space-time”, Synthese 92 (3): 385–434. DOI: http://dx.doi.org/10.1007/bf00414289

Belnap, N., 2007, “An indeterministic view of the parameters of truth”,in T. Müller (ed.), Philosophie der Zeit. Neue analytische Ansätze, Klostermann, Frankfurt.

Belnap, N., and M. Green, 1994, “Indeterminism and the thin red line”, Philosophical Perspectives 8: 365–388. DOI: http://dx.doi.org/10.2307/2214178

Bernays, P., 1922, “Die Bedeutung Hilberts für die Philosophie der Mathematik”, Die Naturwissenschaften 10: 93–99.

Burgess, J. P., 1978, “The unreal future”, Theoria 44 (3): 157–79. DOI: http://dx.doi.org/10.1111/j.1755-2567.1978.tb00175.x

Cantor, G., 1962, Gesammelte Abhandlungen, Georg Olms, Hildesheim.

Davies, P. C., 1974, The Physics of Time Asymmetry, University of California Press, Berkeley.

Eddington, A. S., 1920, Space, Time and Gravitation, Cambridge University Press.

Einstein, A., 1949, Einstein-Besso Correspondence, Herman, Paris.

Fine, K., 2005, Modality and Tense. Philosophical Papers, Clarendon Press, Oxford.

Fine, K., 2009, “The question of ontology”, pages 157–177 in D. Chalmers, D. Manley and R. Wasserman (eds.), Metametaphysics. New Essays on the Foundations of Ontology, Clarendon Press, Oxford.

Grünbaum, A., 1967, “The anisotropy of time”, in T. Gold (ed.), The Nature of Time, Cornell University Press.

Hallett, M., 1995, “Logic and existence”, pages 33–82 in L. Krüger and B. Falkenburg (eds.), Physik, Philosophie und die Einheit der Wissenschaft, Spektrum, Heidelberg.

Hamblin, C. L., 1972, “Instants and intervals”, pages 324–331 in J. T. Fraser, F. C. Haber and G. H. Müller (eds.), The Study of Time. Proceedings of the First Conference of the International Society for the Study of Time in Oberwolfach, Germany, 1969, Springer, Berlin and Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-642-65387-2_23

Jokić, A., and Q. Smith (eds.), 2003, Time, Tense, and Reference, MIT Press, Cambridge, Mass.

Kant, I., 1956, Kritik der reinen Vernunft, Felix Meiner, Hamburg.

Leibniz, G. W., 1976, “The monadology”, pages 643–653 in Philosophical Papers and Letters, trans. and ed. by L. E. Loemker, Reidel: Dordrecht.

Lewis, D., 1986, On the Plurality of Worlds, Wiley-Blackwell, Oxford.

Łukasiewicz, J., 1918/1970, “Farewell lecture by Professor Jan Łukasiewicz, delivered in the Warsaw University Lecture Hall on March 7, 1918”, pages 84–86 in Selected Works, North-Holland, Amsterdam.

Łukasiewicz, J., 1920/1970, “On three-valued logic”, pages 87–88 in Selected Works, North-Holland, Amsterdam.

Łukasiewicz, J., 1922/1970, “On determinism”, pages 110–128 in Selected Works, North-Holland, Amsterdam.

MacFarlane, J., 2003, “Future contingents and relative truth”, The Philosophical Quarterly 53 (212): 321–336. DOI: http://dx.doi.org/10.1111/1467-9213.00315

McCabe, G., 2005, “The topology of branching universes”, Foundation of Physics Letters 18: 665–676. DOI: http://dx.doi.org/10.1007/s10702-005-1319-9

McCall, S., 2004, A Model of the Universe. Space-Time, Probability, and Decision, Clarendon Press, Oxford.

Mellor, D. H., 1981, Real Time, Cambridge University Press.

Newton, I., 1718. Opticks. Or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light, W. and J. Innys, London.

Ockham, W., 1945, Tractatus de praedestinationet de praescientiadei et futuris contingentibus, St. Bonaventure College, New York.

Oaklander L. N., 1991, “A defense of the new tenseless theory of time”, Philosophical Quarterly 41 (162): 26–38. DOI: http://dx.doi.org/10.2307/2219784

Øhrstrom, P., and P. Hasle, 1995, Temporal Logic. From Ancient Ideas to Artificial Intelligence, Kluwer Academic Publishers, Dordrecht.

Øhrstrom, P., and P. Hasle, 2020, “Future contingents”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2020 Edition. https://plato.stanford.edu/archives/sum2020/entries/future-contingents/

Prior, A. N., 1967, Past, Present and Future, Clarendon Press, Oxford.

Prior, A. N., 1972, “The notion of the present”, pages 320–323 in J. T. Fraser, F. C. Haber and G. H. Müller (eds.), The Study of Time. Proceedings of the First Conference of the International Society for the Study of Time in Oberwolfach, Germany, 1969, Springer, Berlin and Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-642-65387-2_22

Quine, W. V. O., 1961, From a Logical Point of View, Harvard University Press.

Rakić, N., 1997, “Past, present, future, and special relativity”, British Journal for the Philosophy of Science 48 (2): 257–280. DOI: http://dx.doi.org/10.1093/bjps/48.2.257

Reichenbach, H., 1956, Elements of Symbolic Logic, Macmillan, New York.

Rini, A., and M. J. Cresswell, 2012, The World-Time Parallel. Tense and Modality in Logic and Metaphysics, Cambridge University Press.

Rosenkranz, S., 2012, “In defence of Ockhamism”, Philosophia 40 (3): 617–631. DOI: http://dx.doi.org/10.1007/s11406-011-9337-2

Russell, B., 1915, “On the experience of time”, Monist 25: 212–233.

Schlick, M., 1931, “Die Kausalität in der gegenwärtigen Physik”, Naturwissenschaften 19: 145–162.

Sextus Empiricus, 2012, Against the Physicists, trans. and ed. by R. Bett, Cambridge University Press.

Smart, J. J. C., 1955, “Spatialising time”, Mind 64 (254): 239–241. DOI: http://dx.doi.org/10.1093/mind/lxiv.254.239

Todd, P., 2016, “Future contingents are all false! On behalf of a Russellian open future”, Mind 125 (499): 775–798. DOI: http://dx.doi.org/10.1093/mind/fzv170

Thomason, R., 1970, “Indeterminist time and truth-value gaps”, Theoria 36 (3): 264–281. DOI: http://dx.doi.org/10.1111/j.1755-2567.1970.tb00427.x

van Fraassen, B. C., 1966, “Singular terms, truth-value gaps and free logic”, Journal of Philosophy 63 (17): 481–495. DOI: http://dx.doi.org/10.2307/2024549

Weyl, H., 1949, Philosophy of Mathematics and Natural Sciences, Princeton University Press.

Wheeler, J. A., and R. P. Feynman, 1949, “Classical electrodynamics in terms of direct interparticle action”, Review of Modern Physics 21: 425–433. DOI: http://dx.doi.org/10.1103/RevModPhys.21.425

Whitehead, A. N., 1929, Process and Reality, Macmillan, New York.

Williamson, T., 2013, Modal Logic as Metaphysics, Oxford University Press.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

27.03.2023

Jak cytować

1.
ARSENIJEVIĆ, Miloš & JANDRIĆ, Andrej. Future Contingencies and the Arrow and Flow of Time in a Non-Deterministic World According to the Temporal-Modal System TM. Logic and Logical Philosophy [online]. 27 marzec 2023, T. 32, nr 4, s. 529–581. [udostępniono 29.6.2025]. DOI 10.12775/LLP.2023.001.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 32 Nr 4 (2023): Grudzień

Dział

Artykuły

Licencja

Prawa autorskie (c) 2023 Miloš Arsenijević, Andrej Jandrić

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 1140
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

sea-battle puzzle, tenses, in-the-world-inherent modalities, indeterminism, the arrow of time, the flow of time
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa