Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

From Inconsistency to Incompatibility
  • Home
  • /
  • From Inconsistency to Incompatibility
  1. Home /
  2. Archives /
  3. Vol. 32 No. 2 (2023): June /
  4. Articles

From Inconsistency to Incompatibility

Authors

  • Marcelo E. Coniglio Department of Philosophy , Institute of Philosophy and the Humanities (IFCH),University of Campinas https://orcid.org/0000-0002-1807-0520
  • Guilherme V. Toledo Post-Doctoral Researcher at the Computer Science Department, Science Faculty, Bar-Ilan University https://orcid.org/0000-0002-6539-398X

DOI:

https://doi.org/10.12775/LLP.2022.027

Keywords

incompatibility, paraconsistent logics, non-deterministic matrices, restricted non-deterministic matrices

Abstract

The aim of this article is to generalize logics of formal inconsistency (LFIs) to systems dealing with the concept of incompatibility, expressed by means of a binary connective. The basic idea is that having two incompatible formulas to hold trivializes a deduction, and as a special case, a formula becomes consistent (in the sense of LFIs) when it is incompatible with its own negation. We show how this notion extends that of consistency in a non-trivial way, presenting conservative translations for many simple LFIs into some of the most basic logics of incompatibility, thereby evidencing in a precise way how the notion of incompatibility generalizes that of consistency. We provide semantics for the new logics, as well as decision procedures, based on restricted non-deterministic matrices. The use of non-deterministic semantics with restrictions is justified by the fact that, as proved here, these systems are not algebraizable according to Blok-Pigozzi nor are they characterizable by finite Nmatrices. Finally, we briefly compare our logics to other systems focused on treating incompatibility, specially those pioneered by Brandom and further developed by Peregrin.

References

Avron, A., “Non-deterministic matrices and modular semantics of rules”, pages 149–167 in J.-Y. Béziau (ed.), Logica Universalis, Birkhäuser Verlag: Basel, 2005.

Avron, A., and I. Lev, “Canonical propositional Gentzen-type systems”, pages 529–544 in R. Gore, A. Leitsch, and T. Nipkow (eds.), Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), vol. 2083 of LNAI, Springer Verlag, 2001.

Blok, W. J., and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, 1989.

Brandom, R. B., and A. Aker, Between Saying and Doing: Towards an Analytic Pragmatism, Oxford University Press, 2008.

Carnielli, W., and M. E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, vol. 40 of the Logic, Epistemology, and the Unity of Science Series, Springer: Cham, 2016. DOI: http://dx.doi.org/10.1007/978-3-319-33205-5

Carnielli, W. A., M. E. Coniglio and J. Marcos, “Logics of formal inconsistency”, pages 1–93 in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd. edition, vol. 14, Springer, 2007. DOI: http://dx.doi.org/10.1007/978-1-4020-6324-4_1

Carnielli, W. A., and J. Marcos, “A taxonomy of C-systems”, pages 1–94 in W. A. Carnielli, M. E. Coniglio and I. M. L. D’Ottaviano (eds.), Paraconsistency: The Logical Way to the Inconsistent, vol. 228 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker: New York, 2002. DOI: http://dx.doi.org/10.1201/9780203910139.pt1

Coniglio, M. E., and G. V. Toledo, “Two decision procedures for da Costa’s Cn logics based on restricted nmatrix semantics”, Studia Logica 110, 3 (2022): 601–642. DOI: http://dx.doi.org/10.1007/s11225-021-09972-z

da Costa, N. C. A., Sistemas formais inconsistentes (Inconsistent Formal Systems, in Portuguese), Habilitation Thesis, Universidade do Paraná, Curitiba, 1963 (republished by Editora UFPR, Brazil 1993).

Feitosa, H. A., and I. M. L. D’Ottaviano, “Conservative translations”, Annals of Pure and Applied Logic 108, 1–3 (2001): 205–227.

Fidel, M., “The decidability of the calculi Cn”, Reports on Mathematical Logic 8 (1977): 31–40.

Lewin, R. A., I. F. Mikenberg and M. G. Schwarze, “C1 is not algebraizable”, Notre Dame Journal of Formal Logic 32, 4 (1991): 609–611.

Mendelson, E., Introduction to Mathematical Logic, 5th. edition, Chapman & Hall: New York, 1987.

O’Connor, D. J., “Incompatible properties”, Analysis 15, 5 (1955): 109–117. DOI: http://dx.doi.org/10.1093/analys/15.5.109

Peregrin, J., “Brandom’s incompatibility semantics”, Philosophical Topics 36, 2 (2008):99–121.

Peregrin, J., “Logic as based in incompatibility”, pages 157–168 in M. Peliš and V. Punčochář (eds.), The Logica Yearbook 2010, College Publications: London, 2011.

Piochi, B., “Matrici adequate per calcoli generali predicativi”, Bolletino della Unione Matematica Italiana 15A (1978): 66–76.

Piochi, B., “Logical matrices and non-structural consequence operators”, Studia Logica 42, 1 (1983): 33–42.

Wójcicki, R., Lectures on Propositional Calculi, Ossolineum: Wroclaw, 1984.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-09-27

How to Cite

1.
CONIGLIO, Marcelo E. and TOLEDO, Guilherme V. From Inconsistency to Incompatibility. Logic and Logical Philosophy. Online. 27 September 2022. Vol. 32, no. 2, pp. 181-216. [Accessed 21 May 2025]. DOI 10.12775/LLP.2022.027.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 2 (2023): June

Section

Articles

License

Copyright (c) 2022 Marcelo E. Coniglio, Guilherme V. Toledo

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1377
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

incompatibility, paraconsistent logics, non-deterministic matrices, restricted non-deterministic matrices
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop