Many-Valued Logics and Bivalent Modalities
DOI:
https://doi.org/10.12775/LLP.2022.013Keywords
modal logic, many-valued logic, non-normal modal logic, bivalenceAbstract
In this paper, we investigate the family LS0.5 of many-valued modal logics LS0.5's. We prove that the modalities of necessity and possibility of the logics LS0.5's capture well-defined bivalent concepts of logical validity and logical consistency. We also show that these modalities can be used as recovery operators.
References
Anderson, A. R., and Belnap, N. B., 1975, Entailment: The Logic of Relevance and Necessity, vol. I, Princeton University Press.
Belnap, N. B., 1977, “A useful four-valued logic”, pages 5–37 in J. M. Dunn, G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, Episteme (A Series in the Foundational, Methodological, Philosophical, Psychological, Sociological, and Political Aspects of the Sciences, Pure and Applied), vol. 2, Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-010-1161-7_2
Bezerra, E. V., 2020, “Society semantics for four-valued Łukasiewicz logic”, Logic Journal of the IGPL 28 (5): 892–911. DOI: http://dx.doi.org/10.1093/jigpal/jzy066
Baaz, M., C. G. Fermüller, A. Ovrutcki R. Zach, 1993, “FeMULTLOG: A system for axiomatizing many-valued logics”, pages 345–347 in International Conference on Logic for Programming Artificial Intelligence and Reasoning, Springer.
Bonzio, S., J. Gil-Férez, F. Paoli L. Peruzzi, 2017, “On paraconsistent weak Kleene logic: Axiomatisation and algebraic analysis”, Studia Logica 105 (2): 253–297. DOI: http://dx.doi.org/10.1007/s11225-016-9689-5
Bochvar, D., 1981, “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus” (Translated by Merrie Bergmann), History and Philosophy of Logic 2 (1–2): 87–112. DOI: http://dx.doi.org/10.1080/01445348108837023
Boolos, G., 1993, The Logic of Provability, Routledge, Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9780511625183
Carnielli, W., 1987, “Systematization of finite many-valued logics through the method of tableaux”, The Journal of Symbolic Logic 52 (2): 473–493. DOI: http://dx.doi.org/10.2307/2274395
Ciuni, R., and M. Carrara, 1987, “Normality operators and classical recapture in many-valued logic”, Logic Journal of the IGPL 28 (5): 657–683. DOI: http://dx.doi.org/10.1093/jigpal/jzy055
Caleiro, C., W. Carnielli, M. Coniglio and J. Marcos, 2005, “Two’s company: ‘The humbug of many logical values’ ”, pages 169–189 in J.-Y. Beziau, Logica Universalis, Birkhäuser Basel. DOI: http://dx.doi.org/10.1007/978-3-7643-8354-1_10
Carnielli, W., M. Coniglio and J. Marcos, 2007, “Logics of formal inconsistency”, pages 1–93 in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic. DOI: http://dx.doi.org/10.1007/978-1-4020-6324-4_1
Coniglio, M., and N. Peron, 2013, “Modal extensions of sub-classical logics for recovering classical logic”, Logica Universalis 7 (1): 71–86. DOI: http://dx.doi.org/10.1007/s11787-012-0076-3
Cresswell, M. J., 1966, “The completeness of S0.5”, Logique et Analyse 9 (34): 263–266.
Cresswell, M. J., 1988, “Necessity and contingency”, Studia Logica 47 (2): 145–149. DOI: http://dx.doi.org/10.1007/BF00370288
Da Costa, N. C A., 1974, “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic 15 (4): 497–510. DOI: http://dx.doi.org/10.1305/ndjfl/1093891487
Dalmonte, T., C. Grellois and N. Olivetti, 2020, “Intuitionistic non-normal modal logics: A general framework”, Journal of Philosophical Logic 49 (5): 833–882. DOI: http://dx.doi.org/10.1007/s10992-019-09539-3
Da Ré, B., F. Pailos and D. Szmuc, 2018, “Theories of truth based on four-valued infectious logics”, Logic Journal of the IGPL 28 (5): 712–746. DOI: http://dx.doi.org/10.1093/jigpal/jzy057
Da Ré, B., and D. Szmuc,2021, “Immune logics”, The Australasian Journal of Logic 18 (1). DOI: http://dx.doi.org/10.26686/ajl.v18i1.6582
Epstein, R., 1990, The Semantic Foundations of Logic, vol. 1: Propositional Logics, Springer. DOI: http://dx.doi.org/10.1007/978-94-009-0525-2
Goldberg, H., H. Leblanc and G. Weaver, 1974, “A strong completeness theorem for 3-valued logic”, Logic Journal of the IGPL 5 (2): 325–330. DOI: http://dx.doi.org/10.1305/ndjfl/1093891310
Gödel, K., 1933, pages 39–40 in “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse eines mathematisches Kolloquiums.
Humberstone, L., 1995, “The logic of non-contingency”, Notre Dame Journal of Formal Logic 36 (2): 214–229. DOI: http://dx.doi.org/10.1305/ndjfl/1040248455
Ketland, K., 2012, “Validity as a primitive”, Analysis 72 (3): 421–430. DOI: http://dx.doi.org/10.1093/analys/ans064
Kleene, S., 1938, “On notation for ordinal numbers”, The Journal of Symbolic Logic 3 (2): 150–155. DOI: http://dx.doi.org/10.2307/2267778
Kubyshkina, E., and D. Zaitsev, 2016, “Rational agency from a truth-functional perspective”, Logic and Logical Philosophy 25 (4): 499–520. DOI: http://dx.doi.org/10.12775/LLP.2016.016
Lemmon, E. L., 1957, “New foundations for Lewis modal systems”, The Journal of Symbolic Logic 22 (2): 176–186. DOI: http://dx.doi.org/10.2307/2964179
Lemmon, E. L., 1959, “Is there only one correct system of modal logic?”, pages 23–56 in Proceedings of the Aristotelian Society, Supplementary Volumes. DOI: http://dx.doi.org/10.1093/aristoteliansupp/33.1.23
Malinowski, G., 1993, Many-Valued Logics, Oxford Logic Guides. DOI: http://dx.doi.org/10.1002/9781405164801.ch14
Marcos, J., 2005, “Nearly every normal modal logic is paranormal”, Logique et Analyse 48 (189/192): 279–300.
Milberger, M., 1978, “The minimal modal logic: a cautionary tale about primitives and definitions”, Notre Dame Journal of Formal Logic 19 (3): 486–488. DOI: http://dx.doi.org/10.1305/ndjfl/1093888412
Montague, R., 1963, “Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability”, pages 153–167 in Acta Philosophica Fennica, Helsinki.
Montgomery, H., and R. Routley, 1966, “Contingency and non-contingency bases for normal modal logics”, Logique et Analyse 9 (35/36): 318–328.
Pietruszczak, A., 2009, “Simplified Kripke style semantics for some very weak modal logics”, Logic and Logical Philosophy 18 (3–4): 271–296. DOI: http://dx.doi.org/10.12775/LLP.2009.013
Pietruszczak, A., 2012a, “Semantical investigations on some weak modal logics. Part I”, Bulletin of the Section of Logic 41 (1/2): 33–50.
Pietruszczak, A., 2012b, “Semantical investigations on some weak modal logics. Part II”, Bulletin of the Section of Logic 41 (3/4): 109–130.
Pogorzelski, W. A., 1994, Notions and Theorems of Elementary Formal Logic, Warsaw.
Priest, G., 1979, “The logic of paradox”, Journal of Philosophical Logic 8 (1): 219–241. DOI: http://dx.doi.org/10.1007/BF00258428
Priest, G., 2008, “Many-valued modal logics: a simple approach”, The Review of Symbolic Logic 1 (2): 190–203. DOI: http://dx.doi.org/10.1017/S1755020308080179
Rescher, N., 1969, Many-Valued Logic, New York: McGraw Hill. DOI: http://dx.doi.org/10.1007/978-94-017-3546-9_6
Schotch, P. K., J. B. Jensen, P. F. Larsen and E. J. MacLellan, 1978, “A note on three-valued modal logic”, Notre Dame Journal of Formal Logic, 19 (1): 63–68.
Skyrms, B., 1978, “An immaculate conception of modality or how to confuse use and mention”, The Journal of Philosophy 75 (7): 368–387.
Suszko, R., 1977, “The Fregean Axiom and Polish mathematical logic in the 1920’s”, Studia Logica 36 (4): 377–380. DOI: http://dx.doi.org/10.1007/BF02120672
Szmuc, D., 2016, “Defining LFIs and LFUs in extensions of infectious logics”, Journal of Applied Non-Classical Logics 26 (4): 286–314. DOI: http://dx.doi.org/10.1080/11663081.2017.1290488
Wajsberg, M., 1967, “Axiomatization of the three-valued sentential calculus”, pages 264–284 in Polish Logic.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Edson Bezerra, Giorgio Venturi
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1465
Number of citations: 0