Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Many-Valued Logics and Bivalent Modalities
  • Home
  • /
  • Many-Valued Logics and Bivalent Modalities
  1. Home /
  2. Archives /
  3. Vol. 31 No. 4 (2022): December /
  4. Articles

Many-Valued Logics and Bivalent Modalities

Authors

  • Edson Bezerra University of Campinas (UNICAMP) https://orcid.org/0000-0002-0865-5197
  • Giorgio Venturi University of Campinas (UNICAMP) https://orcid.org/0000-0001-9089-4340

DOI:

https://doi.org/10.12775/LLP.2022.013

Keywords

modal logic, many-valued logic, non-normal modal logic, bivalence

Abstract

In this paper, we investigate the family LS0.5 of many-valued modal logics LS0.5's. We prove that the modalities of necessity and possibility of the logics LS0.5's capture well-defined bivalent concepts of logical validity and logical consistency. We also show that these modalities can be used as recovery operators.

References

Anderson, A. R., and Belnap, N. B., 1975, Entailment: The Logic of Relevance and Necessity, vol. I, Princeton University Press.

Belnap, N. B., 1977, “A useful four-valued logic”, pages 5–37 in J. M. Dunn, G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, Episteme (A Series in the Foundational, Methodological, Philosophical, Psychological, Sociological, and Political Aspects of the Sciences, Pure and Applied), vol. 2, Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-010-1161-7_2

Bezerra, E. V., 2020, “Society semantics for four-valued Łukasiewicz logic”, Logic Journal of the IGPL 28 (5): 892–911. DOI: http://dx.doi.org/10.1093/jigpal/jzy066

Baaz, M., C. G. Fermüller, A. Ovrutcki R. Zach, 1993, “FeMULTLOG: A system for axiomatizing many-valued logics”, pages 345–347 in International Conference on Logic for Programming Artificial Intelligence and Reasoning, Springer.

Bonzio, S., J. Gil-Férez, F. Paoli L. Peruzzi, 2017, “On paraconsistent weak Kleene logic: Axiomatisation and algebraic analysis”, Studia Logica 105 (2): 253–297. DOI: http://dx.doi.org/10.1007/s11225-016-9689-5

Bochvar, D., 1981, “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus” (Translated by Merrie Bergmann), History and Philosophy of Logic 2 (1–2): 87–112. DOI: http://dx.doi.org/10.1080/01445348108837023

Boolos, G., 1993, The Logic of Provability, Routledge, Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9780511625183

Carnielli, W., 1987, “Systematization of finite many-valued logics through the method of tableaux”, The Journal of Symbolic Logic 52 (2): 473–493. DOI: http://dx.doi.org/10.2307/2274395

Ciuni, R., and M. Carrara, 1987, “Normality operators and classical recapture in many-valued logic”, Logic Journal of the IGPL 28 (5): 657–683. DOI: http://dx.doi.org/10.1093/jigpal/jzy055

Caleiro, C., W. Carnielli, M. Coniglio and J. Marcos, 2005, “Two’s company: ‘The humbug of many logical values’ ”, pages 169–189 in J.-Y. Beziau, Logica Universalis, Birkhäuser Basel. DOI: http://dx.doi.org/10.1007/978-3-7643-8354-1_10

Carnielli, W., M. Coniglio and J. Marcos, 2007, “Logics of formal inconsistency”, pages 1–93 in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic. DOI: http://dx.doi.org/10.1007/978-1-4020-6324-4_1

Coniglio, M., and N. Peron, 2013, “Modal extensions of sub-classical logics for recovering classical logic”, Logica Universalis 7 (1): 71–86. DOI: http://dx.doi.org/10.1007/s11787-012-0076-3

Cresswell, M. J., 1966, “The completeness of S0.5”, Logique et Analyse 9 (34): 263–266.

Cresswell, M. J., 1988, “Necessity and contingency”, Studia Logica 47 (2): 145–149. DOI: http://dx.doi.org/10.1007/BF00370288

Da Costa, N. C A., 1974, “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic 15 (4): 497–510. DOI: http://dx.doi.org/10.1305/ndjfl/1093891487

Dalmonte, T., C. Grellois and N. Olivetti, 2020, “Intuitionistic non-normal modal logics: A general framework”, Journal of Philosophical Logic 49 (5): 833–882. DOI: http://dx.doi.org/10.1007/s10992-019-09539-3

Da Ré, B., F. Pailos and D. Szmuc, 2018, “Theories of truth based on four-valued infectious logics”, Logic Journal of the IGPL 28 (5): 712–746. DOI: http://dx.doi.org/10.1093/jigpal/jzy057

Da Ré, B., and D. Szmuc,2021, “Immune logics”, The Australasian Journal of Logic 18 (1). DOI: http://dx.doi.org/10.26686/ajl.v18i1.6582

Epstein, R., 1990, The Semantic Foundations of Logic, vol. 1: Propositional Logics, Springer. DOI: http://dx.doi.org/10.1007/978-94-009-0525-2

Goldberg, H., H. Leblanc and G. Weaver, 1974, “A strong completeness theorem for 3-valued logic”, Logic Journal of the IGPL 5 (2): 325–330. DOI: http://dx.doi.org/10.1305/ndjfl/1093891310

Gödel, K., 1933, pages 39–40 in “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse eines mathematisches Kolloquiums.

Humberstone, L., 1995, “The logic of non-contingency”, Notre Dame Journal of Formal Logic 36 (2): 214–229. DOI: http://dx.doi.org/10.1305/ndjfl/1040248455

Ketland, K., 2012, “Validity as a primitive”, Analysis 72 (3): 421–430. DOI: http://dx.doi.org/10.1093/analys/ans064

Kleene, S., 1938, “On notation for ordinal numbers”, The Journal of Symbolic Logic 3 (2): 150–155. DOI: http://dx.doi.org/10.2307/2267778

Kubyshkina, E., and D. Zaitsev, 2016, “Rational agency from a truth-functional perspective”, Logic and Logical Philosophy 25 (4): 499–520. DOI: http://dx.doi.org/10.12775/LLP.2016.016

Lemmon, E. L., 1957, “New foundations for Lewis modal systems”, The Journal of Symbolic Logic 22 (2): 176–186. DOI: http://dx.doi.org/10.2307/2964179

Lemmon, E. L., 1959, “Is there only one correct system of modal logic?”, pages 23–56 in Proceedings of the Aristotelian Society, Supplementary Volumes. DOI: http://dx.doi.org/10.1093/aristoteliansupp/33.1.23

Malinowski, G., 1993, Many-Valued Logics, Oxford Logic Guides. DOI: http://dx.doi.org/10.1002/9781405164801.ch14

Marcos, J., 2005, “Nearly every normal modal logic is paranormal”, Logique et Analyse 48 (189/192): 279–300.

Milberger, M., 1978, “The minimal modal logic: a cautionary tale about primitives and definitions”, Notre Dame Journal of Formal Logic 19 (3): 486–488. DOI: http://dx.doi.org/10.1305/ndjfl/1093888412

Montague, R., 1963, “Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability”, pages 153–167 in Acta Philosophica Fennica, Helsinki.

Montgomery, H., and R. Routley, 1966, “Contingency and non-contingency bases for normal modal logics”, Logique et Analyse 9 (35/36): 318–328.

Pietruszczak, A., 2009, “Simplified Kripke style semantics for some very weak modal logics”, Logic and Logical Philosophy 18 (3–4): 271–296. DOI: http://dx.doi.org/10.12775/LLP.2009.013

Pietruszczak, A., 2012a, “Semantical investigations on some weak modal logics. Part I”, Bulletin of the Section of Logic 41 (1/2): 33–50.

Pietruszczak, A., 2012b, “Semantical investigations on some weak modal logics. Part II”, Bulletin of the Section of Logic 41 (3/4): 109–130.

Pogorzelski, W. A., 1994, Notions and Theorems of Elementary Formal Logic, Warsaw.

Priest, G., 1979, “The logic of paradox”, Journal of Philosophical Logic 8 (1): 219–241. DOI: http://dx.doi.org/10.1007/BF00258428

Priest, G., 2008, “Many-valued modal logics: a simple approach”, The Review of Symbolic Logic 1 (2): 190–203. DOI: http://dx.doi.org/10.1017/S1755020308080179

Rescher, N., 1969, Many-Valued Logic, New York: McGraw Hill. DOI: http://dx.doi.org/10.1007/978-94-017-3546-9_6

Schotch, P. K., J. B. Jensen, P. F. Larsen and E. J. MacLellan, 1978, “A note on three-valued modal logic”, Notre Dame Journal of Formal Logic, 19 (1): 63–68.

Skyrms, B., 1978, “An immaculate conception of modality or how to confuse use and mention”, The Journal of Philosophy 75 (7): 368–387.

Suszko, R., 1977, “The Fregean Axiom and Polish mathematical logic in the 1920’s”, Studia Logica 36 (4): 377–380. DOI: http://dx.doi.org/10.1007/BF02120672

Szmuc, D., 2016, “Defining LFIs and LFUs in extensions of infectious logics”, Journal of Applied Non-Classical Logics 26 (4): 286–314. DOI: http://dx.doi.org/10.1080/11663081.2017.1290488

Wajsberg, M., 1967, “Axiomatization of the three-valued sentential calculus”, pages 264–284 in Polish Logic.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-04-11

How to Cite

1.
BEZERRA, Edson & VENTURI, Giorgio. Many-Valued Logics and Bivalent Modalities. Logic and Logical Philosophy [online]. 11 April 2022, T. 31, nr 4, s. 611–636. [accessed 2.4.2023]. DOI 10.12775/LLP.2022.013.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 4 (2022): December

Section

Articles

License

Copyright (c) 2022 Edson Bezerra, Giorgio Venturi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1055
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

modal logic, many-valued logic, non-normal modal logic, bivalence
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop