Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Metainferential Paraconsistency
  • Strona domowa
  • /
  • Metainferential Paraconsistency
  1. Strona domowa /
  2. Archiwum /
  3. Tom 31 Nr 2 (2022): Czerwiec /
  4. Artykuły

Metainferential Paraconsistency

Autor

  • Bruno Da Ré Department of Philosophy, University of Buenos Aires, IIF-CONICET UBA https://orcid.org/0000-0002-2958-7840
  • Mariela Rubin IIF-CONICET, UBA https://orcid.org/0000-0002-9392-3618
  • Paula Teijeiro Department of Philosophy, University of Buenos Aires, IIF-CONICET UBA https://orcid.org/0000-0003-3906-8339

DOI:

https://doi.org/10.12775/LLP.2022.008

Słowa kluczowe

paraconsistency, metainferential logics, uniformity

Abstrakt

In this article, our aim is to take a step towards a full understanding of the notion of paraconsistency in the context of metainferential logics. Following the work initiated by Barrio et al. [2018], we will consider a metainferential logic to be paraconsistent whenever the metainferential version of Explosion (or meta-Explosion) is invalid. However, our contribution consists in modifying the definition of meta-Explosion by extending the standard framework and introducing a negation for inferences and metainferences. From this new perspective, Tarskian paraconsistent logics such as LP will not turn out to be metainferentially paraconsistent, in contrast to, for instance, non-transitive logics like ST. Finally, we will end up by defining a logic which is metainferentially paraconsistent at every level, and discussing whether this logic is uniform through translations.

Bibliografia

Asenjo, F. G., 1966, “A calculus for antinomies”, Notre Dame Journal of Formal Logic 16 (1): 103–105. DOI: https://doi.org/10.1305/ndjfl/1093958482

Avron, A., 1991, “Simple consequence relations.”, Information and Computation 92 (1): 105–139. DOI: https://doi.org/10.1016/0890-5401(91)90023_U

Barrio, E., F. Pailos and D. Szmuc, 2018, “What is a paraconsistent logic?”, pages 89–108 in W. Carnielli and J. Malinowski (eds.), Between Consistency and Inconsistency, Trends in Logic, Springer. DOI: https://doi.org/10.1007/978-3-319-98797-2_5

Barrio, E., F. Pailos and D. Szmuc, 2020, “A hierarchy of classical and paraconsistent logics”, Journal of Philosophical Logic 49 (1): 93–120. DOI: https://doi.org/10.1007/s10992-019-09513_z

Barrio, E., L. Rosenblatt and D. Tajer, 2015, “The logics of strict-tolerant logic”, Journal of Philosophical Logic 44 (5): 551–571. DOI: https://doi.org/10.1007/s10992-014-9342_6

Beall Jc, 2009, Spandrels of Truth, Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199268733.001.0001

Carnielli, W., M. Coniglio J. Marcos, 2007, “Logics of formal inconsistency”, pages 1–93 in Handbook of Philosophical Logic, Springer. DOI: https://doi.org/10.1007/978-1-4020-6324-4_1

Carnielli, W., and A. Rodrigues, 2019, “An epistemic approach to paraconsistency: A logic of evidence and truth”, Synthese 196 (9): 3789–3813. DOI: https://doi.org/10.1007/s11229-017-1621_7

Carnielli, W., and M. Coniglio, 2016, Paraconsistent Logic: Consistency, Contradiction and Negation, Springer. DOI: https://doi.org/10.1007/978-3-319-33205-5

Cobreros, P., and P. Égré, D. Ripley and R. van Rooij, 2012, “Tolerant, classical, strict”, Journal of Philosophical Logic 41 (2): 347–385. DOI: https://doi.org/10.1007/s10992-010-9165_z

Cobreros, P., P. Égré, D. Ripley and R. van Rooij, 2014, “Reaching transparent truth”, Mind 122 (488): 841–866. DOI: https://doi.org/10.1093/mind/fzt110

Cobreros, P., E. La Rosa and L. Tranchini, 2020, “(I can’t get no) antisatisfaction”, Synthese 198: 8251–8265. DOI: https://doi.org/10.1007/s11229-020-02570_x

Da Costa, N. C. A, 1974, “On the theory of inconsistent formal systems”, Notre dame journal of formal logic 15 (4): 497–510. DOI: https://doi.org/10.1305/ndjfl/1093891487

Da Ré, B., 2019, “Paraconsistencia total”, Revista de humanidades de Valparaiso 13: 90–101.

Da Ré, B., F. Pailos, D. Szmuc and P. Teijeiro, 2020, “Metainferential duality”, Journal of Applied Non-Classical Logics 30 (4): 312–334. DOI: https://doi.org/10.1080/11663081.2020.1826156

De, M., and H. Omori, 2016, “Classical and empirical negation in subintuitionistic logic”, pages 217–235 in L. Beklemishev, S. Demri and A. Máté (eds.), Advances in Modal Logic, College Publications.

De, M., and H. Omori, 2018, “There is more to negation than modality”, Journal of Philosophical Logic 47 (2): 281–299. DOI: https://doi.org/10.1007/s10992-017-9427_0

Dicher, B., F. Paoli, 2019, “ST, LP, and tolerant metainferences”, pages 383–407 in C. Başkent and T. Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency, Springer. DOI: https://doi.org/10.1007/978-3-030-25365-3_18

Kleene, S. C., 1952, Introduction to Metamathematics, North-Holland.

Mares, E., 2020, “Relevance logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2020/entries/logic-relevance/

Pailos, F., 2019, “A family of metainferential logics”, Journal of Applied Non-Classical Logics 29 (1): 97–120. DOI: https://doi.org/10.1080/11663081.2018.1534486

Pailos, F., 2019, “A fully classical truth theory characterized by substructural means”, The Review of Symbolic Logic 13 (2): 249–268. DOI: https://doi.org/10.1017/S1755020318000485

Priest, G., 1979, “The logic of paradox”, Journal of Philosophical Logic 8 (1): 219–241. DOI: https://doi.org/10.1007/BF00258428

Priest, G., 2006, In Contradiction: A Study of the Transconsistent, Oxford University Press, Oxford. DOI: https://doi.org/10.2307/2219835

Priest, G., F. Berto and Z. Weber, 2018, “Dialetheism”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2018/entries/dialetheism/

Priest, G., R. Routley and J. Norman, 1989a, Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag.

Priest, G., K. Tanaka and Z. Weber, 2018b, “Paraconsistent logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/

Pynko, A. P., 2010, “Gentzen’s cut-free calculus versus the logic of paradox”, Bulletin of the Section of Logic 39 (1/2): 35–42.

Ripley, D., 2012, “Conservatively extending classical logic with transparent truth”, Review of Symbolic Logic 2 (5): 354–378. DOI: https://doi.org/10.1017/S1755020312000056

Ripley, D., 2015, “Paraconsistent logic”, Journal of Philosophical Logic 44 (6): 771–780. DOI: https://doi.org/10.1007/s10992-015-9358-6

Routley, R., and R. K. Meyer, 1976, “Dialectical logic, classical logic, and the consistency of the world”, Studies in East European Thought 16 (1): 1–25. DOI: https://doi.org/10.1007/BF00832085

Scambler, C., 2020, “Classical logic and the strict tolerant hierarchy”, Journal of Philosophical Logic 49 (2): 351–370. DOI: https://doi.org/10.1007/s10992-019-09520-0

Slater, B. H., 1995, “Paraconsistent logics?”, Journal of Philosophical Logic 24 (4): 451–454. DOI: https://doi.org/10.1007/BF01048355

Urbas, I., 1990, “Paraconsistency”, Studies in Soviet Thought 39 (3–4): 343–354. DOI: https://doi.org/10.1007/BF00838045

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

07.02.2022

Jak cytować

1.
DA RÉ, Bruno, RUBIN, Mariela & TEIJEIRO, Paula. Metainferential Paraconsistency. Logic and Logical Philosophy [online]. 7 luty 2022, T. 31, nr 2, s. 235–260. [udostępniono 4.7.2025]. DOI 10.12775/LLP.2022.008.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 31 Nr 2 (2022): Czerwiec

Dział

Artykuły

Licencja

Prawa autorskie (c) 2022 Bruno Da Ré, Mariela Rubin, Paula Teijeiro

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 1453
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

paraconsistency, metainferential logics, uniformity
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa