Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Defusing a Paradox to a Hypodox
  • Strona domowa
  • /
  • Defusing a Paradox to a Hypodox
  1. Strona domowa /
  2. Archiwum /
  3. Tom 33 Nr 4 (2024): December /
  4. Artykuły

Defusing a Paradox to a Hypodox

Autor

  • Peter Eldridge-Smith Australian National University https://orcid.org/0000-0001-7780-9201

DOI:

https://doi.org/10.12775/LLP.2024.020

Słowa kluczowe

Hypodox, Paradox, Bertrand’s Chord Paradox, Liar Paradox, Liar Hypodox, Curry’s Paradox, Yablo’s Paradox, Epimenides Paradox, Truth-teller, Parking Voucher Paradox, Paradoxical dilemma, Dilemma over a hypodox, Ship of Theseus, Water-and-wine Problem

Abstrakt

One way of resolving a paradox is to defuse it to a hypodox. This way is relatively unknown though. The goal of this paper is to explain this way with varied examples. The hypodoxes are themselves a broad class: both the Truth-teller and the 21st birthday of someone born on 29th February can be construed as hypodoxes. The most familiar kind of relation between paradoxes and hypodoxes is exemplified by the relation between the Liar and the Truth-teller. This article concerns a second kind where a paradox is defused to a hypodox by restricting or rejecting some granted principles. The Liar paradox has this second kind of relation to a Liar hypodox, which will be introduced. In some cases, defusing a paradox to a hypodox is only a partial resolution, as the hypodox itself may then need resolving. Even so, such a partial resolution decomposes a complex problem into more easily understood problems. Moreover, I compare the result of defusing a paradox to a hypodox with the results of resolving paradoxes in other ways. I give four examples. The first is mainly pedagogic, concerning a birthday. The second is a lightweight legal case, presenting a parking voucher paradox. The third is a formal system in which a Liar and Liar-like sentences are hypodoxical. The fourth is a philosophical critique of ways of solving Bertrand’s chord paradox.

 

Bibliografia

Bertrand, J., 1889, Calcul des probabilities, Paris: Gauthier-Villars et Fils.

Church, A., 1946, “Alexandre Koyré, ‘The liar. Philosophy and phenomenological research’, vol. 6, no. 3 (1946), pp. 344–362”, The Journal of Symbolic Logic, 11(4): 131–131.

Clark, M., 2012, Paradoxes from A to Z, Routledge.

Cook, R. T., 2009, Dictionary of Philosophical Logic, Edinburgh University Press.

Cook, R. T., 2013, Paradoxes, John Wiley & Sons.

Cook, R. T., 2020, “An intensional theory of truth: an informal report”, The Philosophical Forum, 51(2): 115–126.

Cook, R. T., 2022, “Outline of an intensional theory of truth”, Notre Dame Journal of Formal Logic, 63(1): 81–108.

Da Ré, B., F. Pailos, and D. Szmuc, 2020, “Theories of truth based on four-valued infectious logics”, Logic Journal of the IGPL, 28(5): 712–746. DOI: http://dx.doi.org/10.1093/jigpal/jzy057

Eldridge-Smith, P., 2007, “Paradoxes and hypodoxes of time travel”, in J. Lloyd Jones, P. Campbell, and P. Wylie (eds.), Art and Time, Australian Scholarly Publishing, Melbourne. https://philarchive.org/archive/ELDPAH

Eldridge-Smith, P., 2008, “The liar paradox and its relatives”, PhD Thesis: The Australian National University. https://digitalcollections.anu.edu.au/handle/1885/49284. DOI: http://dx.doi.org/10.25911/5d7a2c4535ea8

Eldridge-Smith, P., 2012, “A hypodox! a hypodox! a disingeneous hypodox!”, The Reasoner, 6(7): 118–19. https://research.kent.ac.uk/reasoning/the-reasoner/the-reasoner-volume-6/

Eldridge-Smith, P., 2019, “The liar hypodox: A truth-teller’s guide to defusing proofs of the liar paradox”, Open Journal of Philosophy, 9(2): 152–171. https://file.scirp.org/pdf/OJPP_2019050716145501.pdf. DOI: http://dx.doi.org/10.4236/ojpp.2019.92011

Eldridge-Smith, P., 2020, “Two fallacies in proofs of the liar paradox”, Philosophia, 48(3): 947–966. DOI: http://dx.doi.org/10.1007/s11406-019-00158-5

Eldridge-Smith, P., 2022, “In search of modal hypodoxes using paradox hypodox duality”, Philosophia, 50:2457–2476. DOI: http://dx.doi.org/10.1007/s11406-022-00546-4

Eldridge-Smith, P., 2023, “The import of hypodoxes for the liar and russell’s paradoxes”, Synthese, 202(4): 105. DOI: http://dx.doi.org/10.1007/s11229-023-04326-9

Fine, K., 1975, “Vagueness, truth and logic”, Synthese: 265–300.

Gilbert. W. S., and A. S. Sullivan, 1879, The Pirates of Penzance, Chappell 1919.

James, W., 1907, “Lecture ii: What pragmatism means”, in Pragmatism: A New Name for Some Old Ways of Thinking, Project Gutenberg. https://www.gutenberg.org/files/5116/5116-h/5116-h.htm#link2H_4_0004

Jaynes, E. T., 1968, “Prior probabilities”, IEEE Transactions on systems science and cybernetics, 4(3): 227–241.

Jaynes, E. T., 1973, “The well-posed problem”, Foundations of Physics, 3(4): 477–492.

Lycan, W. G., 2010, “What, exactly, is a paradox?”, Analysis, 70(4): 615–622.

Mackie, J. L., 1973, Truth, Probability and Paradox: Studies in Philosophical Logic, Oxford University Press.

Marinoff, L., 1994, “A resolution of bertrand’s paradox”, Philosophy of Science, 61(1): 1–24.

McGee, V., 1990, Truth, Vagueness, and Paradox: An Essay on the Logic of Truth, Hackett Publishing.

Mikkelson, J. M., 2004, “Dissolving the wine/water paradox”, The British Journal for the Philosophy of Science, 55(1): 137–145.

Mortensen, Ch., and G. Priest, 1981, “The truth teller paradox”, Logique et Analyse, 24(95/96): 381–388.

OED, 2020a, “Anniversary, n. and adj.”, in Oxford English Dictionary, Oxford University Press. www.oed.com/view/Entry/7909

OED, 2020b, “Birthday, n.”, in Oxford English Dictionary, Oxford University Press. www.oed.com/view/Entry/19398

Olin, D., 2003, Paradox, vol. 12, McGill-Queen’s Press-MQUP.

Prior, A. N., 1958, “Epimenides the cretans”, Journal of Symbolic Logic, 23(3): 261–266.

Prior, A. N., 1961, “On a family of paradoxes”, Notre Dame Journal of Formal Logic, 2(1): 16–32.

Quine, W. V. O., 1976, “The ways of paradox”, pages 1–18 in The Ways of Paradox and Other Essays, Harvard University Press Cambridge, MA.

Quine, W. V. O., 1995, “Truth, paradox and Gödel’s theorem”, His Selected Logic Papers (Enlarged ed., pp. 236–241), Cambridge, MA: Harvard University Press.

Rescher, N., 2001, “Paradoxes”, Their Roots, Range and Resolution, Chicago and La Salle, Illinois: Open Court.

Rosenblatt, L., and C. Gallovich, 2022, “Paradoxicality in Kripke’s theory of truth”, Synthese, 200(2): 1–23. DOI: http://dx.doi.org/10.1007/s11229-022-03625-x

Rosenblatt, L., and D. E. Szmuc, 2014, “On pathological truths”, The Review of Symbolic Logic, 7(4): 601–617. DOI: http://dx.doi.org/10.1017/S1755020314000239

Rossi, L., 2019, “A unified theory of truth and paradox”, The Review of Symbolic Logic, 12(2): 209–254. DOI: http://dx.doi.org/10.1017/S1755020319000078

Sainsbury, R. M., 2009, Paradoxes, Cambridge University Press.

Schiffer, S. R., 2003, The Things we Mean, Oxford University Press.

Shackel, N., 2007, “Bertrand’s paradox and the principle of indifference”, Philosophy of Science, 74(2): 150–175.

Smullyan, R. M., 1957, “Languages in which self reference is possible”, The Journal of Symbolic Logic, 22(1): 55–67.

Sorensen, R., 2003, A Brief History of the Paradox: Philosophy and the Labyrinths of the Mind, Oxford University Press.

Tarski, A., 1936, “The concept of truth in formalized languages”, pages 152–278 in J. Corcoran (ed.), Logic, Semantics and Metamathematics, Hackett Pub. Co., Indianapolis.

Tarski, A., 1944, “The semantic conception of truth and the foundations of semantics”, Philosophy and Phenomenological Research, 4: 341–376.

Tourville. N., and R. T. Cook, 2020, “Embracing intensionality: Paradoxicality and semi-truth operators in fixed point models”, Logic Journal of the IGPL, 28(5): 747–770. DOI: http://dx.doi.org/10.1093/jigpal/jzy058

Wrangham, R., 2019, The Goodness Paradox: How evolution made us both more and less violent, Profile Books.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

15.08.2024

Jak cytować

1.
ELDRIDGE-SMITH, Peter. Defusing a Paradox to a Hypodox. Logic and Logical Philosophy [online]. 15 sierpień 2024, T. 33, nr 4, s. 567–614. [udostępniono 7.7.2025]. DOI 10.12775/LLP.2024.020.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 33 Nr 4 (2024): December

Dział

Artykuły

Licencja

Prawa autorskie (c) 2024 Peter Eldridge-Smith

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 595
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

Hypodox, Paradox, Bertrand’s Chord Paradox, Liar Paradox, Liar Hypodox, Curry’s Paradox, Yablo’s Paradox, Epimenides Paradox, Truth-teller, Parking Voucher Paradox, Paradoxical dilemma, Dilemma over a hypodox, Ship of Theseus, Water-and-wine Problem
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa