Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Incorporating the Relation into the Language? A Survey of Approaches in Relating Logic
  • Home
  • /
  • Incorporating the Relation into the Language? A Survey of Approaches in Relating Logic
  1. Home /
  2. Archives /
  3. Vol. 30 No. 4 (2021): December /
  4. Articles

Incorporating the Relation into the Language?

A Survey of Approaches in Relating Logic

Authors

  • Luis Estrada-González Institute for Philosophical Research, National Autonomous University of Mexico (UNAM) https://orcid.org/0000-0002-1466-0240
  • Alessandro Giordani Faculty of Letters and Philosophy, Catholic University of Milan https://orcid.org/0000-0003-4654-2174
  • Tomasz Jarmużek https://orcid.org/0000-0003-3456-3859
  • Mateusz Klonowski Nicolaus Copernicus University in Toruń. Department of Logic https://orcid.org/0000-0001-8616-9189
  • Igor Sedlár https://orcid.org/0000-0002-1942-7982
  • Andrew Tedder https://orcid.org/0000-0002-7378-4673

DOI:

https://doi.org/10.12775/LLP.2021.014

Keywords

incorporating relation, object language, relating logic, relating semantics

Abstract

In this paper we discuss whether the relation between formulas in the relating model can be directly introduced into the language of relating logic, and present some stances on that problem. Other questions in the vicinity, such as what kind of functor would be the incorporated relation, or whether the direct incorporation of the relation into the language of relating logic is really needed, will also be addressed.

References

Anderson, A. R., and N. D. Belnap., 1975, Entailment: The Logic of Relevance and Necessity, Volume I, Princeton University Press.

Areces, C., P. Blackburn and M. Marx, 2001, “Hybrid logics: Characterization, interpolation and iomplexity”, Journal of Symbolic Logic 66 (3): 977–1010.

Artemov, S., and M. Fitting, 2019, Justification Logic: Reasoning with Reasons, New York: Cambridge University Press.

Avron, A., 2014, “What is relevance logic?”, Annals of Pure and Applied Logic 165: 26–48.

Blackwell, A. F., 2008, “Cognitive dimensions of notations: understanding the ergonomics of diagram use”, pages 5–8 in G. Stapleton; J. Howse and J. Lee (eds.), Diagrammatic Representation and Inference, Berlin: Springer.

Barceló, A., 2016, “Las imágenes como herramientas epistémicas”, scientiae studia, 14 (1): 45–63.

Baker, A., 2003, “Quantitative parsimony and explanatory power”, British Journal for the Philosophy of Science 54(2): 245–259.

Bellucci, F., A. Moktefi and A.-V. Pietarinen, 2018, “Simplex sigillum veri: Peano, Frege, and Peirce on the primitives of logic”, History and Philosophy of Logic 39(1): 80–95.

Booth, D., 1991, “Logical feedback”, Studia Logica 50 (2): 225–239.

Carnielli, W. A., M. E. Coniglio and J. Marcos, 2014, “Logics of formal inconsistency”, pages 1–93 in D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 14. Springer, Dordrecht.

Dutilh Novaes, C., 2012, Formal Languages in Logic. A Philosophical and Cognitive Analysis, Cambridge University Press.

Epstein, R. L., 1979, “Relatedness and implication”, Philosophical Studies 36: 137–173. DOI: https://doi.org/10.1007/BF00354267

Epstein, R. L., 1987, “The algebra of dependence logic”, Reports on Mathematical Logic 21: 19–34.

Epstein, R. L. (with the assistance and collaboration of W. Carnielli, I. D’Ottaviano, S. Krajewski, R. Maddux), 1990, The Semantic Foundations of Logic, Volume 1: Propositional Logics, Springer: Dordrecht. DOI: https://doi.org/10.1007/978-94-009-0525-2

Fagin, R., and J. Y. Halpern, 1988, “Belief, awareness and limited reasoning”, Artificial Intelligence 34: 39–76. DOI: https://doi.org/10.1016/0004-3702(87)90003-8

Gabbay, D. M., 2014, “Introduction to labelled deductive systems”, pages 179–266 in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 17. Springer, Dordrecht.

Humberstone, L., 2011, The Connectives, MIT Press.

Jarmużek, T., 2021, “Relating semantics as fine-grained semantics for intensional propositional logics”, pages 13–30 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_2

Jarmużek, T., and B. Kaczkowski, 2014, “On some logic with a relation imposed on formulae: tableau system F”, Bulletin of the Section of Logic 43 (1/2): 53–72.

Jarmużek, T., and M. Klonowski, 2020, “On logics of strictly-deontic modalities. A semantic and tableau approach”, Logic and Logical Philosophy 29 (3): 335–380. DOI: https://doi.org/10.12775/LLP.2020.010

Jarmużek, T., and M. Klonowski, 2021, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_3

Jarmużek, T., and M. Klonowski, submitted, “Classical mono-relating logic. Theory and axiomatization”.

Jarmużek, T., and M. Klonowski, manuscript, “Axiomatizing Boolean logics with relating implication defined by positive relational properties”.

Jarmużek, T., and T. Kupś, 2020, “The heritage of Jerzy Łoś’s philosophical logic and the Polish question. An introduction to the volume”, in the special issue: “The heritage of Jerzy Łoś’s philosophical logic”, Studia z Historii Filozofii 3 (11): 93-107.

Jarmużek, T., and J. Malinowski, 2019a, “Boolean connexive logics: semantics and tableau approach”, Logic and Logical Philosophy 28 (3): 427–448. DOI: https://doi.org/10.12775/LLP.2019.003

Jarmużek, T., and J. Malinowski, 2019b, “Modal Boolean connexive logics: semantics and tableau approach”, Bulletin of the Section of Logic 48 (3): 213–243. DOI: https://doi.org/10.18778/0138-0680.48.3.05

Jarmużek, T., and M. Tkaczyk, 2019, “Expressive power of the positional operator R: a Case Study in Modal Logic and Modal Philosophy”, Ruch Filozoficzny 2: 93–107.

Klonowski, M., 2018, “A Post-style proof of completeness theorem for symmetric relatedness logic S”, Bulletin of the Section of Logic 47 (3): 201–214. DOI: https://doi.org/10.18778/0138-0680.47.3.05

Klonowski, M., 2019, “Axiomatization of monorelational relating logics” (in Polish: “Aksjomatyzacja monorelacyjnych logik wiążących”) PhD thesis, Nicolaus Copernicus University in Toruń.

Klonowski, M., 2021, “Axiomatization of some basic and modal Boolean connexive logics”, Logica Universalis. DOI: https://doi.org/10.1007/s11787-021-00291-4

Malinowski, J., and R. Palczewski, 2021, “Relating semantics for connexive logic”, pages 49–65 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_4

Paoli, F., 1993, “Semantics for first degree relatedness logic”, Reports on Mathematical Logic 27: 81–94.

Paoli, F., 2007, “Tautological entailments and their rivals”, pages 153–175 in J.-Y. Béziau, W. A. Carnielli and D. M. Gabbay (eds.), Handbook of Paraconsistency, College Publications: London.

Russell, G., 2017, “An introduction to logical nihilism”, pages 125–155 in H. Leitgeb, I. Niiniluoto, P. Seppälä and E. Sober (eds.), Logic, Methodology and Philosophy of Science. Proceedings of the 15th International Congress, College Publications: London.

Scott, D. S., 1973, “Background to formalization”, pp. 244–273 in H. Leblanc (ed.), Truth, Syntax and Modality, North-Holland: Amsterdam, 1973.

Wansing, H., 1998, Displaying Modal Logic, Springer: Dordrecht. Woleński, J., 1989, Logic and Philosophy in the Lvov-Warsaw School, Kluwer: Dordrecht.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-11-28

How to Cite

1.
ESTRADA-GONZÁLEZ, Luis, GIORDANI, Alessandro, JARMUŻEK, Tomasz, KLONOWSKI, Mateusz, SEDLÁR, Igor and TEDDER, Andrew. Incorporating the Relation into the Language? A Survey of Approaches in Relating Logic. Logic and Logical Philosophy. Online. 28 November 2021. Vol. 30, no. 4, pp. 711-739. [Accessed 28 December 2025]. DOI 10.12775/LLP.2021.014.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 30 No. 4 (2021): December

Section

Articles

License

Copyright (c) 2021 Luis Estrada-González, Alessandro Giordani, Tomasz Jarmużek, Mateusz Klonowski, Igor Sedlár, Andrew Tedder

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1155
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

incorporating relation, object language, relating logic, relating semantics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop