Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

On the Axiom of Canonicity
  • Strona domowa
  • /
  • On the Axiom of Canonicity
  1. Strona domowa /
  2. Archiwum /
  3. Tom 32 Nr 1 (2023): Marzec /
  4. Artykuły

On the Axiom of Canonicity

Autor

  • Jerzy Pogonowski Department of Logic and Cognitive Science, Adam Mickiewicz University in Poznań https://orcid.org/0000-0003-3717-3661

DOI:

https://doi.org/10.12775/LLP.2022.022

Słowa kluczowe

extremal axiom, axiom of restriction, constructible set, Skolem’s paradox, countability, uncountability, model of set theory

Abstrakt

The axiom of canonicity was introduced by the famous Polish logician Roman Suszko in 1951 as an explication of Skolem's Paradox (without reference to the L\"{o}wenheim-Skolem theorem) and a precise representation of the axiom of restriction in set theory proposed much earlier by Abraham Fraenkel. We discuss the main features of Suszko's contribution and hint at its possible further applications.

Bibliografia

Awodey, S., and E. H. Reck, 2002, “Completeness and categoricity. Part I: nineteenth-century axiomatics to twentieth-century metalogic”, History and Philosophy of Logic 23: 1–30.

Batóg, T., 1994, Podstawy logiki [Fundamentals of logic], Poznań: Wydawnictwo Naukowe UAM.

Bays, T., 2014, “Skolem’s paradox”, Stanford Encyclopedia of Philosophy, accessed on June 15, 2021. https://plato.stanford.edu/entries/paradox-skolem/

Bellotti, L., 2008, “Skolem, the Skolem’s ‘paradox’ and informal mathematics”, Theoria 72: 177–220.

Bernays, P., 1937, “A system of axiomatic set theory. Part I”, The Journal of Symbolic Logic 2: 65–77.

Bernays, P., 1941, “A system of axiomatic set theory. Part II”, The Journal of Symbolic Logic 6: 1–17.

Bernays, P., 1942a, “A system of axiomatic set theory. Part III”, The Journal of Symbolic Logic 7: 65–89.

Bernays, P., 1942b, “A system of axiomatic set theory. Part IV”, The Journal of Symbolic Logic 7: 133–145.

Bernays, P., 1943, “A system of axiomatic set theory. Part V”, The Journal of Symbolic Logic 8: 89–106.

Bernays, P., 1948, “A system of axiomatic set theory. Part VI”, The Journal of Symbolic Logic 13: 65–79.

Bloom, S. L., and R. Suszko, 1972, “Investigations into sentential calculus with identity”, Notre Dame Journal of Symbolic Logic 13: 289–308.

Carnap, R., 1937, The Logical Syntax of Language, London: Kegan Paul.

Carnap, R. 1954, Einführung in die symbolische Logik mit besonderer Berücksichtigung ihrer Anwendungen, Wien: Springer-Verlag.

Carnap, R., and F. Bachmann, 1936, “Über Extremalaxiome”, Erkenntnis 6: 166–188.

Cohen, P. 1966, Set theory and the continuum hypothesis, New York: W. A. Benjamin.

Dedekind, R. 1888, Was sind und was sollen die Zahlen? Braunschweig: Friedrich Vieweg und Sohn.

Ehrlich, P. 2012, “The absolute arithmetic continuum and the unification of all numbers great and small”, The Bulletin of Symbolic Logic 18 (1): 1–45.

Feferman, S., H. M. Friedman, P. Maddy and J. R. Steel, 2000, “Does mathematics need new axioms?”, The Bulletin of Symbolic Logic 6 (4): 401–446.

Fraenkel, A. A., 1922, “Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre”, Mathematische Annalen 86, 230–237.

Fraenkel, A. A., 1927, Zehn Vorlesungen über die Grundlegung der Mengenlehre, Leipzig und Berlin: Springer.

Fraenkel, A. A., 1928, Einleitung in die Mengenlehre, Berlin: Verlag von Julius Springer.

Fraenkel, A. A., and Y. Bar-Hillel, 1958, Foundations of Set Theory, Amsterdam London: North-Holland Publishing Company.

Fraenkel, A. A., and P. Bernays, 1958, Axiomatic Set Theory, Amsterdam: North-Holland Publishing Company.

Fraenkel, A. A., Y. Bar-Hillel and A. Levy, 1973, Foundations of Set Theory, Amsterdam London: North-Holland Publishing Company.

Friedman, H., 1992, “The incompleteness phenomena”, pages 49–84 in Proceedings of the AMS Centennial Symposium, August 8–12, 1988, American Mathematical Society.

Gödel, K., 1940, “The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory”, Princeton: Annals of Mathematics Studies 3.

Hamkins, J. D., D. Linetzky and J. Reitz, 2013, “Pointwise definable models of set theory”, The Journal of Symbolic Logic 78 (1): 139–156.

Hausdorff, F., 1908, “Grundzüge einer Theorie der geordneten Mengen”, Mathematische Annalen 65 (4): 435–505.

Hilbert, D., 1899, Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, Leipzig: Teubner.

Hintikka, J., 1986, “Extremality assumptions in the foundations of mathematics”, Philosophy of Science Association 2: 247–252.

Jobczyk, K., 2015, “Putnam i jego argument teoriomodelowy. Polemiczne uwagi do Jana Woleńskiego krytyki antyrealizmu semantycznego” [Putnam and his model-theoretic argument. Polemic remarks concerning Jan Woleński’s critique of semantic antirealism], Filozofia Nauki 3 (91): 133–143.

Kanamori, A., 1994, The Higher Infinite. Large Cardinals in Set Theory from their Beginnings, Berlin: Springer-Verlag.

Mostowski, A., 1955, “Współczesny stan badań nad podstawami matematyki” [Recent state of research in the foundations of mathematics], Prace matematyczne 1: 13–55.

Myhill, J. 1952, “The hypothesis that all classes are nameable”, Proceedings of the National Academy of Sciences of the United States of America 38: 979.

Omyła, M. 1986, Zarys logiki niefregowskiej[An Outline of Non-Fregean Logic], Warszawa: Państwowe Wydawnictwo Naukowe.

Peano, G., 1889, Arithmetices Principia, Nova Methodo Exposita, Torino: Bocca.

Pogonowski, J., 2019, Extremal Axioms. Logical, Mathematical and Cognitive Aspects, Poznań: Wydawnictwo Nauk Społecznych i Humanistycznych UAM.

Pogonowski, J., 2020, “A note on intended and standard models”, Studia Humana 9 (3–4): 131–139.

Putnam, H., 1980, “Models and reality”, The Journal of Symbolic Logic 45: 464–482.

Quine, W. V. O., 1941, “Element and number”, The Journal of Symbolic Logic 6 (4): 135–149.

Quine, W. V. O., 1946, “Concatenation as a basis for arithmetic”, The Journal of Symbolic Logic 11 (4): 105–114.

Resnik, M. 1966, “On Skolem’s paradox”, The Journal of Philosophy 63 (15): 425–438.

Schiemer, G., 2010a, “Fraenkel’s axiom of restriction: axiom choice, intended models, and categoricity”, pages 307–340 in B. Löwe and T. Müller (eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice, London: College Publications.

Schiemer, G., 2010b, “Carnap’s early semantics”, PhD Dissertation, Universität Wien.

Schiemer, G., 2012, “Carnap on extremal axioms, “completeness of models”, and categoricity”, The Review of Symbolic Logic 5 (4): 613–641.

Shepherdson, J. C., 1951, “Inner models for set theory. Part I”, The Journal of Symbolic Logic 16: 161–190.

Shepherdson, J. C., 1952, “Inner models for set theory. Part II”, The Journal of Symbolic Logic 17: 225–237.

Shepherdson, J. C. 1953, “Inner models for set theory. Part III”, The Journal of Symbolic Logic 18: 145–167.

Shoenfield, J. R., 1959, “On the independence of the axiom of constructibility”, American Journal of Mathematics 81 (3): 537–540.

Sierpiński, W., and A. Tarski, 1930, “Sur une propriété caractéristique des nombres inaccessibles”, Fundamenta Mathematicae 15: 292–300.

Suszko, R., 1949, “O analitycznych aksjomatach i logicznych regułach wnioskowania. Z teorii definicji [On analytical axioms and logical rules of inference. From the theory of definitions]”, Poznań: Poznańskie Towarzystwo Przyjaciół Nauk, Prace Komisji Filozoficznej 7 (5): 1–57.

Suszko, R., 1950, “Konstruowalne przedmioty i kanoniczne systemy aksjomatyczne” [Constructible objects and canonic axiomatic systems], Kwartalnik Filozoficzny 19 (3/4): 331–359. Published in an archive volume by Polska Akademia Umiejętności and Uniwersytet Jagielloński in 2002.

Suszko, R., 1951, “Canonic axiomatic systems”, Studia Philosophica 4: 301–330.

Suszko, R., 1957a, “Logika formalna a niektóre zagadnienia teorii poznania” [Formal logic and some problems of the theory of knowledge], Myśl Filozoficzna 2 (28): 27–56.

Suszko, R., 1957b, “Logika formalna a niektóre zagadnienia teorii poznania. Diachroniczna logika formalna” [Formal logic and some problems of the theory of knowledge. Diachronic formal logic], Myśl Filozoficzna 3 (29): 34–67.

Suszko, R., 1965, Wykłady z logiki formalnej. Część I: Wstęp do zagadnień logiki. Elementy teorii mnogości [Lectures on formal logic. Part I: Introduction to logic. Elements of set theory], Warszawa: Państwowe Wydawnictwo Naukowe.

Suszko, R., 1967, “Wyprawa przeciw Skolemitom” [Expedition against Skolemites], Studia Filozoficzne 2 (49): 264–266). Review of Resnik [1966].

Suszko, R., 1968, “Formal logic and the development of knowledge”, pages 210–222 in I. Lakatos and A. Musgrave (eds.), Problems in the Philosophy of Science. Proceedings of the International Colloquium in the Philosophy of Science, Amsterdam: North-Holland.

Suszko, R., 1968, “Ontology in the Tractatus of L. Wittgenstein”, Notre Dame Journal of Formal Logic 9: 7–33.

Suszko, R., 1975, “Abolition of the Fregean axiom”, pages 169–239 in R. Parikh (ed.), Logic Colloquium, Lecture Notes in Mathematics 453, Springer Verlag.

Tarski, A., 1933, “Einige Betrachtungen über die Begriffe der ω-Widerspruchsfreiheit und ω-Vollständigkeit”, Monatshefte für Mathematik und Physik 40: 97–112.

Tarski, A., 1935, “Der Wahrheitsbegriff in den formalisierten Sprachen”, Studia Philosophica 1: 261–405.

Wang, H., 1955, “On denumerable bases of formal systems”, pages 57–84 in T. Skolem, G. Hasenjaeger, G. Kreisel, A. Robinson, H. Wang, L. Henkin and J. Łoś (eds.), Mathematical Interpretation of Formal Systems, Amsterdam: North-Holland Publishing Company.

Woleński, J., 2015, “W odpowiedzi Krystianowi Jobczykowi” [In replay to Krystian Jobczyk], Filozofia Nauki 3 (91): 145–149.

Zermelo, E., 1930, “Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre”, Fundamenta Mathematicae 16: 29–47.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

07.07.2022

Jak cytować

1.
POGONOWSKI, Jerzy. On the Axiom of Canonicity. Logic and Logical Philosophy [online]. 7 lipiec 2022, T. 32, nr 1, s. 3–31. [udostępniono 5.7.2025]. DOI 10.12775/LLP.2022.022.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 32 Nr 1 (2023): Marzec

Dział

Artykuły

Licencja

Prawa autorskie (c) 2022 Logic and Logical Philosophy

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 1707
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

extremal axiom, axiom of restriction, constructible set, Skolem’s paradox, countability, uncountability, model of set theory
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa