Measures in Euclidean Point-Free Geometry (an exploratory paper)
DOI:
https://doi.org/10.12775/LLP.2022.031Keywords
measures, point-free structures, region-based theories of spaceAbstract
We face with the question of a suitable measure theory in Euclidean point-free geometry and we sketch out some possible solutions. The proposed measures, which are positive and invariant with respect to movements, are based on the notion of infinitesimal masses, i.e. masses whose associated supports form a sequence of finer and finer partitions.
References
Arntzenius, F., 2008, “Gunk, topology, and measure”, pages 225–247 in D. Zimmerman (ed.), Oxford Studies in Metaphysics, Vol. 4 in Oxford: Oxford University Press.
Arntzenius, F., 2012, “Space, time, and stuff”, Oxford: Oxford University Press (electronic version).
Barbieri, G., and G. Gerla, 2022, “Defining measures in a mereological space: an exploratory paper”, Logic and Logical Philosophy, 31 1: 57–74. DOI: http://dx.doi.org/10.12775/LLP.2021.005
Gerla, G., 1990, “Pointless metric spaces”, J. Symbolic Logic, 55: 207–219. DOI: http://dx.doi.org/10.2307/2274963
Gerla, G., 2020, “Point-free continuum”, in G. Hellman and S. Shapiro (eds.), The History of Continua: Philosophical and Mathematical Perspectives, Oxford University Press.
Gerla, G., and R. Gruszczyński, 2017, “Point-free geometry, ovals, and half-planes”, Rev. Symb. Log., 10, 2: 237–258. DOI: http://dx.doi.org/10.1017/S1755020316000423
Gerla, G., and R. Gruszczyński, “Point-free geometry through ovals and movements”, unpublished paper.
Gerla, G., and A. Miranda, 2020, “Point-free foundation of geometry looking at laboratory activities”, Cogent Mathematics and Statistics: 1–21. DOI: http://dx.doi.org/10.1080/25742558.2020.1761001
Gerla, G., and R. Volpe, 1985, “Geometry without points”, Amer. Math. Monthly, 92: 707–711. DOI: http://dx.doi.org/10.1080/00029890.1985.11971718
Hales, T. C., 2005, “What is motivic measure?”, Bulletin of the American Mathematical Society, 42 3: 119–135. DOI: http://dx.doi.org/10.1090/S0273-0979-05-01053-0
Lando, T., and D. Scott, 2019, “A calculus of regions respecting both measure and topology”, Journal of Philosophical Logic, 14. DOI: http://dx.doi.org/10.1007/s10992-018-9496-8
Previale, F., 1966, “Reticoli metrici”, Boll. Un. Mat. Ital., 21: 243–350.
Pultr, A., 1988, “Diameters in locales: How bad can they be?”, Comm. Math. Universitatis Carolinae, 4: 731–742.
Śniatycki, A., 1968, “An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion”, Dissertationes Math. Rozprawy Mat., 59: 45.
Tarski, A., 1929, “Les fondaments de la géométrie des corps”, pages 29–33 in Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, suplement to Annales de la Société Polonaise de Mathématique, Kraków.
Whitehead, A., 1919, An Enquiry Concerning the Principles of Natural Knowledge, Cambridge University Press.
Whitehead, A., 1920, The Concept of Nature, Univ. Press. Cambridge. DOI: http://dx.doi.org/10.1017/CBO9781316286654
Whitehead, A., 1929, Process and Reality, The Macmillan Co., New York.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Logic and Logical Philosophy

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1522
Number of citations: 0