Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Measures in Euclidean Point-Free Geometry (an exploratory paper)
  • Home
  • /
  • Measures in Euclidean Point-Free Geometry (an exploratory paper)
  1. Home /
  2. Archives /
  3. Vol. 32 No. 4 (2023): December /
  4. Articles

Measures in Euclidean Point-Free Geometry (an exploratory paper)

Authors

  • Giuseppina Barbieri Department of Mathematics University of Salerno, Italy https://orcid.org/0000-0002-6460-1951
  • Giangiacomo Gerla Department of Mathematics University of Salerno, Italy

DOI:

https://doi.org/10.12775/LLP.2022.031

Keywords

measures, point-free structures, region-based theories of space

Abstract

We face with the question of a suitable measure theory in Euclidean point-free geometry and we sketch out some possible solutions. The proposed measures, which are positive and invariant with respect to movements, are based on the notion of infinitesimal masses, i.e. masses whose associated supports form a sequence of finer and finer partitions.

References

Arntzenius, F., 2008, “Gunk, topology, and measure”, pages 225–247 in D. Zimmerman (ed.), Oxford Studies in Metaphysics, Vol. 4 in Oxford: Oxford University Press.

Arntzenius, F., 2012, “Space, time, and stuff”, Oxford: Oxford University Press (electronic version).

Barbieri, G., and G. Gerla, 2022, “Defining measures in a mereological space: an exploratory paper”, Logic and Logical Philosophy, 31 1: 57–74. DOI: http://dx.doi.org/10.12775/LLP.2021.005

Gerla, G., 1990, “Pointless metric spaces”, J. Symbolic Logic, 55: 207–219. DOI: http://dx.doi.org/10.2307/2274963

Gerla, G., 2020, “Point-free continuum”, in G. Hellman and S. Shapiro (eds.), The History of Continua: Philosophical and Mathematical Perspectives, Oxford University Press.

Gerla, G., and R. Gruszczyński, 2017, “Point-free geometry, ovals, and half-planes”, Rev. Symb. Log., 10, 2: 237–258. DOI: http://dx.doi.org/10.1017/S1755020316000423

Gerla, G., and R. Gruszczyński, “Point-free geometry through ovals and movements”, unpublished paper.

Gerla, G., and A. Miranda, 2020, “Point-free foundation of geometry looking at laboratory activities”, Cogent Mathematics and Statistics: 1–21. DOI: http://dx.doi.org/10.1080/25742558.2020.1761001

Gerla, G., and R. Volpe, 1985, “Geometry without points”, Amer. Math. Monthly, 92: 707–711. DOI: http://dx.doi.org/10.1080/00029890.1985.11971718

Hales, T. C., 2005, “What is motivic measure?”, Bulletin of the American Mathematical Society, 42 3: 119–135. DOI: http://dx.doi.org/10.1090/S0273-0979-05-01053-0

Lando, T., and D. Scott, 2019, “A calculus of regions respecting both measure and topology”, Journal of Philosophical Logic, 14. DOI: http://dx.doi.org/10.1007/s10992-018-9496-8

Previale, F., 1966, “Reticoli metrici”, Boll. Un. Mat. Ital., 21: 243–350.

Pultr, A., 1988, “Diameters in locales: How bad can they be?”, Comm. Math. Universitatis Carolinae, 4: 731–742.

Śniatycki, A., 1968, “An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion”, Dissertationes Math. Rozprawy Mat., 59: 45.

Tarski, A., 1929, “Les fondaments de la géométrie des corps”, pages 29–33 in Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, suplement to Annales de la Société Polonaise de Mathématique, Kraków.

Whitehead, A., 1919, An Enquiry Concerning the Principles of Natural Knowledge, Cambridge University Press.

Whitehead, A., 1920, The Concept of Nature, Univ. Press. Cambridge. DOI: http://dx.doi.org/10.1017/CBO9781316286654

Whitehead, A., 1929, Process and Reality, The Macmillan Co., New York.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-11-18

How to Cite

1.
BARBIERI, Giuseppina and GERLA, Giangiacomo. Measures in Euclidean Point-Free Geometry (an exploratory paper). Logic and Logical Philosophy. Online. 18 November 2022. Vol. 32, no. 4, pp. 619-638. [Accessed 28 June 2025]. DOI 10.12775/LLP.2022.031.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 4 (2023): December

Section

Articles

License

Copyright (c) 2022 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1572
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

measures, point-free structures, region-based theories of space
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop