Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Counterparts, Essences and Quantified Modal Logic
  • Home
  • /
  • Counterparts, Essences and Quantified Modal Logic
  1. Home /
  2. Archives /
  3. Vol. 32 No. 1 (2023): March /
  4. Articles

Counterparts, Essences and Quantified Modal Logic

Authors

  • Tomasz Bigaj University of Warsaw https://orcid.org/0000-0002-8121-9789

DOI:

https://doi.org/10.12775/LLP.2022.001

Keywords

quantified modal logic, counterpart theory, essentialism, cheap haecceitism, David Lewis

Abstract

It is commonplace to formalize propositions involving essential properties of objects in a language containing modal operators and quantifiers. Assuming David Lewis’s counterpart theory as a semantic framework for quantified modal logic, I will show that certain statements discussed in the metaphysics of modality de re, such as the sufficiency condition for essential properties, cannot be faithfully formalized. A natural modification of Lewis’s translation scheme seems to be an obvious solution but is not acceptable for various reasons. Consequently, the only safe way to express some intuitions regarding essential properties is to use directly the language of counterpart theory without modal operators.

References

Bigaj, T., 2016, “Essentialism and modern physics”, pages 145–178 in T. Bigaj and C. Wüthrich (eds.), Metaphysics in Contemporary Physics, Brill/Rodopi, Leiden–Boston. DOI: https://doi.org/10.1163/9789004310827_008

Fine, K., 1994, “Essence and modality”, pages 1–16 in Philosophical Perspectives, vol. 8, Logic and Language.

Garson, J. (2018), “Modal logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Fall 2018 Edition. https://plato.stanford.edu/archives/fall2018/entries/logic-modal/.

Glick, D., 2016, “Minimal structural essentialism”, pages 1–28 in A. Guay and T. Pradeau (eds.), Individuals Across the Sciences, Oxford University Press, Oxford. DOI: https://doi.org/10.1093/acprof:oso/9780199382514.003.0012

Lewis, D., 1968, “Counterpart theory and quantified modal logic”, The Journal of Philosophy 65 (5): 113–126. Reprinted as [Lewis 1983]. https://doi.org/DOI: 10.2307/2024555

Lewis, D., 1983, “Counterpart theory and quantified modal logic” with Postscript, pages 26–46 in Philosophical Papers, vol. I, Oxford University Press, Oxford. DOI: https://doi.org/10.1093/0195032047.003.0003

Lewis, D., 1986, On the Plurality of Worlds, Blackwell, Oxford.

Mackie, P., 2006, How Things Might Have Been. Individuals, Kinds, and Essential Properties, Clarendon Press, Oxford.

Skow, B., 2008, “Haecceitism, anti-haecceitism and possible worlds”, Philosophical Quarterly 58: 98–107. DOI: https://doi.org/10.1111/j.1467-9213.2007.516.x

Skow, B., 2011, “More on haecceitism and possible worlds”, Analytic Philosophy 52 (4): 267–269. DOI: https://doi.org/10.1111/j.2153-960X.2011.00533.x

Stalnaker, R., 1976, “Possible worlds”, Noûs 10 (1): 65–75. DOI: https://doi.org/10.2307/2214477

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-01-10

How to Cite

1.
BIGAJ, Tomasz. Counterparts, Essences and Quantified Modal Logic. Logic and Logical Philosophy. Online. 10 January 2022. Vol. 32, no. 1, pp. 39-52. [Accessed 17 May 2025]. DOI 10.12775/LLP.2022.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 1 (2023): March

Section

Articles

License

Copyright (c) 2022 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1869
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

quantified modal logic, counterpart theory, essentialism, cheap haecceitism, David Lewis
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop