S5-Style Non-Standard Modalities in a Hypersequent Framework
DOI:
https://doi.org/10.12775/LLP.2021.020Keywords
hypersequent calculus, cut elimination, proof theory, modal logic, contingency logic, essence logic, accident logicAbstract
The aim of the paper is to present some non-standard modalities (such as non-contingency, contingency, essence and accident) based on S5-models in a framework of cut-free hypersequent calculi. We also study negated modalities, i.e. negated necessity and negated possibility, which produce paraconsistent and paracomplete negations respectively. As a basis for our calculi, we use Restall's cut-free hypersequent calculus for S5. We modify its rules for the above-mentioned modalities and prove strong soundness and completeness theorems by a Hintikka-style argument. As a consequence, we obtain a cut admissibility theorem. Finally, we present a constructive syntactic proof of cut elimination theorem.
References
Avron, A., and Lahav, O., “A simple cut-free system for a paraconsistent logic equivalent to S5”, pages 29–42 in G. Bezhanishvili, G. D’Agostino, G. Metcalfe, and T. Studer (eds.), Advances in Modal Logic 12, College Publications, 2018.
Avron, A., “The method of hypersequents in the proof theory of propositional non-classical logic”, pages 1–32 in W. Hodges, M. Hyland, C. Steinhorn, and J. Truss (eds.), Logic: From Foundations to Applications, Clarendon Press, 1996.
Bednarska, K., and A. Indrzejczak, “Hypersequent calculi for S5: The methods of cut elimination”, Logic and Logical Philosophy 24, 3 (2015): 277–311. DOI: https://doi.org/10.12775/LLP.2015.018
Béziau, J. Y., “The paraconsistent logic Z. A possible solution to Jaśkowski’s problem”, Logic and Logical Philosophy 15, 2 (2006): 99–111. DOI: https://doi.org/10.12775/LLP.2006.006
Boolos, G., The Logic of Provability, Cambridge University Press, 1993. DOI: https://doi.org/10.1017/CBO9780511625183
Ciabattoni, A., G. Metcalfe, and F. Montagna, “Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions”, Fuzzy Sets and Systems 161, 3 (2006): 369–389. DOI: https://doi.org/10.1016/j.fss.2009.09.001
Ditmarsch, H., and J. Fan, “Propositional quantification in logics of contingency”, Journal of Applied Non-Classical Logics 26, 1 (2016): 1–22. DOI: https://doi.org/10.1080/11663081.2016.1184931
Fan, J. “Logics of essence and accident”, 2015. https://arxiv.org/abs/1506.01872
Fan, J. “Strong noncontingency: On the modal logics of an operator expressively weaker than necessity”, Notre Dame Journal of Formal Logic 60, 3 (2019): 407–435. DOI: https://doi.org/10.1215/00294527-2019-0010
Fan, J. “A family of neighborhood contingency logics”, Notre Dame Journal of Formal Logic 60, 4 (2019): 683–699. DOI: https://doi.org/10.1215/00294527-2019-0025
Fan, J. “Bimodal logics with contingency and accident”, Journal of Philosophical Logic 48, 2 (2019): 425–445. DOI: https://doi.org/10.1007/s10992-018-9470-5
Fan, J. “Symmetric contingency logic with unlimitedly many modalities”, Journal of Philosophical Logic 48, 5 (2019): 851–866. DOI: https://doi.org/10.1007/s10992-018-09498-1
Fan, J. “A family of Kripke contingency logics”, Theoria 86, 4 (2020): 482–499. DOI: https://doi.org/10.1111/theo.12260
Fan, J. “Bimodal logic with contingency and accident: bisimulation and axiomatizations”, Logica Universalis 15, 2 (2021): 123–147. DOI: https://doi.org/10.1007/s11787-021-00270-9
Fan, J., Y. Wang and H. Ditmarsch, “Contingency and knowing whether”, The Review of Symbolic Logic 8, 1 (2015): 75–107. DOI: https://doi.org/10.1017/S1755020314000343
Fine, K. “Essence and modality”, Philosophical Perspectives 8 (1994): 1–16. DOI: https://doi.org/10.2307/2214160
Fine, K. “The logic of essence”, Journal of Philosophical Logic 24, 3 (1995): 241–273. DOI: https://doi.org/10.1007/BF01344203
Fine, K. “Semantics for the logic of essence”, Journal of Philosophical Logic 29, 6 (2000): 543–584. DOI: https://doi.org/10.1023/A:1026591900038
Gilbert, D. R., and G. Venturi, “A note on logics of essence and accident”, Logic Journal of the IGPL 28, 5 (2020): 881–891. DOI: https://doi.org/10.1093/jig-pal/jzy065
Grigoriev, O., and Y. Petrukhin, “On a multilattice analogue of a hypersequent S5 calculus”, Logic and Logical Philosophy 28, 4 (2019): 683–730. DOI: https://doi.org/10.12775/LLP.2019.031
Hart, S., A. Heifetz and D. Samet, “Knowing whether, knowing that, and the cardinality of state spaces”, Journal of Economic Theory 70, 1 (1996): 249–256. DOI: https://doi.org/10.1006/JETH.1996.0084
Humberstone, L., “The logic of noncontingency”, Notre Dame Journal of Formal Logic 36, 2 (1995): 214–229. DOI: https://doi.org/10.1305/ndjfl/1040248455
Indrzejczak, A., “Eliminability of cut in hypersequent calculi for some modal logics of linear frames”, Information Processing Letters 115, 2 (2015): 75–81. DOI: https://doi.org/10.1016/j.ipl.2014.07.002
Indrzejczak, A., "Simple cut elimination proof for hybrid logic”, Logic and Logical Philosophy 25, 2 (2016): 129–141. DOI: https://doi.org/10.12775/LLP.2016.004
Indrzejczak, A., “Cut-free modal theory of definite descriptions”, pages 387–406 in G. Bezhanishvili, G. D’Agostino, G. Metcalfe, and T. Studer (eds.), Advances in Modal Logic 12, College Publications, 2018.
Indrzejczak, A., “Cut elimination in hypersequent calculus for some logics of linear time”, Review of Symbolic Logic 12, 4 (2019): 806–822. DOI: https://doi.org/10.1017/S1755020319000352
Indrzejczak, A., “Two is enough – bisequent calculus for S5”, pages 277–294 in A. Herzig and A. Popescu (eds.), Frontiers of Combining Systems. FroCoS 2019, Springer, 2019. DOI: https://doi.org/10.1007/978-3-030-29007-8_16
Indrzejczak, A., Sequents and Trees: An Introduction to the Theory and Applications of Propositional Sequent Calculi, Birkhäuser Basel, 2021. DOI: https://doi.org/10.1007/978-3-030-57145-0
Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999): 35–56. English translation of paper by 1948. DOI: https://doi.org/10.12775/LLP.1999.003
Kuhn, S., “Minimal non-contingency logic”, Notre Dame Journal of Formal Logic 36, 2 (1995): 230–234. DOI: https://doi.org/10.1305/ndjfl/1040248456
Kurokawa, H., “Hypersequent calculi for modal logics extending S4”, pages 51–68 in Y. Nakano, K. Satoh, and D. Bekki (eds.), New Frontiers in Artificial Intelligence, Cham: Springer, 2003. DOI: https://doi.org/10.1007/978-3-319-10061-6_4
Kuznets, R., and B. Lellmann, “Grafting hypersequents onto nested sequents”, Logic Journal of the IGPL 24, 3 (2016): 375–423. DOI: https://doi.org/10.1093/jigpal/jzw005
Lahav, O., J. Marcos, and Y. Zohar, “Sequent systems for negative modalities”, Logica Universalis 11, 3 (2017): 345–382. DOI: https://doi.org/10.1007/s11787-017-0175-2
Lahav, O., “From frame properties to hypersequent rules in modal logics”, pages 408–417 in 28th Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE, 2013. DOI: https://doi.org/10.1109/LICS.2013.47
Lellmann, B., “Axioms vs hypersequent rules with context restrictions”, pages 307–321 in S. Demri, D. Kapur, and C. Weidenbech (eds.), Proceedings of IJCAR, Cham: Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-08587-6_23
Liu, F., J. Seligman, and P. Girard, “Logical dynamics of belief change in the community”, Synthese 191, 11 (2014): 2403–2431. DOI: https://doi.org/10.1007/s11229-014-0432-3
Marcos, J., “Nearly every normal modal logic is paranormal”, Logique et Analyse 48 (2005): 189–192.
Metcalfe, G., N. Olivetti, and D. Gabbay, Proof Theory for Fuzzy Logics, Cham: Springer, 2008. DOI: https://doi.org/10.1007/978-1-4020-9409-5
Mints, G., “Some calculi of modal logic” [in Russian], Trudy Mat. Inst. Steklov 98 (1968): 88–111.
Montgomery, H., and R. Routley, “Contingency and noncontingency bases for normal modal logics”, Logique et Analyse 9 (1966): 318–328.
Montgomery, H., and R. Routley, “Noncontingency axioms for S4 and S5”, Logique et Analyse 11 (1968): 422–424.
Montgomery, H., and R. Routley, “Modalities in a sequence of normal noncontingency modal systems”, Logique et Analyse 12 (1969): 225–227.
Pan, T., and C. Yang, “A logic for weak essence and srtong accident”, Logique et Analyse 60 (2017): 179–190. DOI: https://doi.org/10.2143/LEA.238.0.3212072
Petrick, R., and F. Bacchus, “Extending the knowledge-based approach to planning with incomplete information and sensing”, pages 613–622 in D. Dubois, C. Welty, and M.-A. Williams (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), AAAI Press, 2004.
Poggiolesi, F., “A cut-free simple sequent calculus for modal logic S5”, Review of Symbolic Logic 1, 1 (2008): 3–15. DOI: https://doi.org/10.1017/S1755020308080040
Poggiolesi, F., Gentzen calculi for modal propositional logic, Springer, 2011. DOI: https://doi.org/10.1007/978-90-481-9670-8
Pottinger, G., “Uniform cut-free formulations of T, S4 and S5”, page 900 in S. Kochen, H. Leblanc, and C. D. Parsons (eds.), “Annual Meeting of the Association for Symbolic Logic, Philadelphia 1981”, Journal of Symbolic Logic 48, 3 (1983). DOI: https://doi.org/10.2307/2273495
Restall, G., “Proofnets for S5: Sequents and circuits for modal logic”, pages 151–172 in C. Dimitracopoulos, L. Newelski, D. Normann, and J. R. Steel (eds.) Logic Colloquium 2005, Cambridge University Press, 2007. DOI: https://doi.org/10.1017/CBO9780511546464.012
Small, C. G., “Reflections on Gödel’s ontological argument”, pages 109–144 in Klarheit in Religionsdingen: Aktuelle Beiträge zur Religionsphilosophie, Band III of Grundlagenprobleme unserer Zeit, Leipziger Universitätsverlag, 2001.
Steinsvold, C., “Completeness for various logics of essence and accident”, Bulletin of the Section of Logic 37, 2 (2008): 93–101.
Steinsvold, C., “A note on logics of ignorance and borders”, Notre Dame Journal of Formal Logic 49, 4 (2008): 385–392. DOI: https://doi.org/10.1215/00294527-2008-018
Steinsvold, C., “The boxdot conjecture and the language of essence and accident”, Australasian Journal of Logic 10 (2011): 18–35. DOI: https://doi.org/10.26686/ajl.v10i0.1822
van der Hoek, W., and A. Lomuscio, “A logic for ignorance”, Electronic Notes in Theoretical Computer Science 85, 2 (2004): 117–133. DOI: https://doi.org/10.1007/978-3-540-25932-9_6
Venturi, G., and P. T. Yago, “Tableaux for essence and contingency”, Logic Journal of IGPL 29, 5 (2021): 719–738. DOI: https://doi.org/10.1093/jigpal/jzaa016
von Wright, G. H., “Deontic logic”, Mind 60 (1951): 1–15. DOI: https://doi.org/10.1093/mind/LX.237.1
Zolin, E., “Sequential reflexive logics with noncontingency operator”, Mathematical Notes 72, 5–6 (2002): 784–798. DOI: https://doi.org/10.1023/A:1021485712270
Zolin, E., “Sequential logic of arithmetical noncontingency”, Moscow University Mathematical Bulletin 56 (2001): 43–48.
Zolin, E., “Completeness and definability in the logic of noncontingency”, Notre Dame Journal of Formal Logic 40, 4 (1999): 533–547. DOI: https://doi.org/10.1305/ndjfl/1012429717
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Logic and Logical Philosophy
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1484
Number of citations: 0