Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

S5-Style Non-Standard Modalities in a Hypersequent Framework
  • Home
  • /
  • S5-Style Non-Standard Modalities in a Hypersequent Framework
  1. Home /
  2. Archives /
  3. Vol. 31 No. 3 (2022): September /
  4. Articles

S5-Style Non-Standard Modalities in a Hypersequent Framework

Authors

  • Yaroslav Petrukhin Department of Logic, University of Lódź https://orcid.org/0000-0002-7731-1339

DOI:

https://doi.org/10.12775/LLP.2021.020

Keywords

hypersequent calculus, cut elimination, proof theory, modal logic, contingency logic, essence logic, accident logic

Abstract

The aim of the paper is to present some non-standard modalities (such as non-contingency, contingency, essence and accident) based on S5-models in a framework of cut-free hypersequent calculi. We also study negated modalities, i.e. negated necessity and negated possibility, which produce paraconsistent and paracomplete negations respectively. As a basis for our calculi, we use Restall's cut-free hypersequent calculus for S5. We modify its rules for the above-mentioned modalities and prove strong soundness and completeness theorems by a Hintikka-style argument. As a consequence, we obtain a cut admissibility theorem. Finally, we present a constructive syntactic proof of cut elimination theorem.

References

Avron, A., and Lahav, O., “A simple cut-free system for a paraconsistent logic equivalent to S5”, pages 29–42 in G. Bezhanishvili, G. D’Agostino, G. Metcalfe, and T. Studer (eds.), Advances in Modal Logic 12, College Publications, 2018.

Avron, A., “The method of hypersequents in the proof theory of propositional non-classical logic”, pages 1–32 in W. Hodges, M. Hyland, C. Steinhorn, and J. Truss (eds.), Logic: From Foundations to Applications, Clarendon Press, 1996.

Bednarska, K., and A. Indrzejczak, “Hypersequent calculi for S5: The methods of cut elimination”, Logic and Logical Philosophy 24, 3 (2015): 277–311. DOI: https://doi.org/10.12775/LLP.2015.018

Béziau, J. Y., “The paraconsistent logic Z. A possible solution to Jaśkowski’s problem”, Logic and Logical Philosophy 15, 2 (2006): 99–111. DOI: https://doi.org/10.12775/LLP.2006.006

Boolos, G., The Logic of Provability, Cambridge University Press, 1993. DOI: https://doi.org/10.1017/CBO9780511625183

Ciabattoni, A., G. Metcalfe, and F. Montagna, “Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions”, Fuzzy Sets and Systems 161, 3 (2006): 369–389. DOI: https://doi.org/10.1016/j.fss.2009.09.001

Ditmarsch, H., and J. Fan, “Propositional quantification in logics of contingency”, Journal of Applied Non-Classical Logics 26, 1 (2016): 1–22. DOI: https://doi.org/10.1080/11663081.2016.1184931

Fan, J. “Logics of essence and accident”, 2015. https://arxiv.org/abs/1506.01872

Fan, J. “Strong noncontingency: On the modal logics of an operator expressively weaker than necessity”, Notre Dame Journal of Formal Logic 60, 3 (2019): 407–435. DOI: https://doi.org/10.1215/00294527-2019-0010

Fan, J. “A family of neighborhood contingency logics”, Notre Dame Journal of Formal Logic 60, 4 (2019): 683–699. DOI: https://doi.org/10.1215/00294527-2019-0025

Fan, J. “Bimodal logics with contingency and accident”, Journal of Philosophical Logic 48, 2 (2019): 425–445. DOI: https://doi.org/10.1007/s10992-018-9470-5

Fan, J. “Symmetric contingency logic with unlimitedly many modalities”, Journal of Philosophical Logic 48, 5 (2019): 851–866. DOI: https://doi.org/10.1007/s10992-018-09498-1

Fan, J. “A family of Kripke contingency logics”, Theoria 86, 4 (2020): 482–499. DOI: https://doi.org/10.1111/theo.12260

Fan, J. “Bimodal logic with contingency and accident: bisimulation and axiomatizations”, Logica Universalis 15, 2 (2021): 123–147. DOI: https://doi.org/10.1007/s11787-021-00270-9

Fan, J., Y. Wang and H. Ditmarsch, “Contingency and knowing whether”, The Review of Symbolic Logic 8, 1 (2015): 75–107. DOI: https://doi.org/10.1017/S1755020314000343

Fine, K. “Essence and modality”, Philosophical Perspectives 8 (1994): 1–16. DOI: https://doi.org/10.2307/2214160

Fine, K. “The logic of essence”, Journal of Philosophical Logic 24, 3 (1995): 241–273. DOI: https://doi.org/10.1007/BF01344203

Fine, K. “Semantics for the logic of essence”, Journal of Philosophical Logic 29, 6 (2000): 543–584. DOI: https://doi.org/10.1023/A:1026591900038

Gilbert, D. R., and G. Venturi, “A note on logics of essence and accident”, Logic Journal of the IGPL 28, 5 (2020): 881–891. DOI: https://doi.org/10.1093/jig-pal/jzy065

Grigoriev, O., and Y. Petrukhin, “On a multilattice analogue of a hypersequent S5 calculus”, Logic and Logical Philosophy 28, 4 (2019): 683–730. DOI: https://doi.org/10.12775/LLP.2019.031

Hart, S., A. Heifetz and D. Samet, “Knowing whether, knowing that, and the cardinality of state spaces”, Journal of Economic Theory 70, 1 (1996): 249–256. DOI: https://doi.org/10.1006/JETH.1996.0084

Humberstone, L., “The logic of noncontingency”, Notre Dame Journal of Formal Logic 36, 2 (1995): 214–229. DOI: https://doi.org/10.1305/ndjfl/1040248455

Indrzejczak, A., “Eliminability of cut in hypersequent calculi for some modal logics of linear frames”, Information Processing Letters 115, 2 (2015): 75–81. DOI: https://doi.org/10.1016/j.ipl.2014.07.002

Indrzejczak, A., "Simple cut elimination proof for hybrid logic”, Logic and Logical Philosophy 25, 2 (2016): 129–141. DOI: https://doi.org/10.12775/LLP.2016.004

Indrzejczak, A., “Cut-free modal theory of definite descriptions”, pages 387–406 in G. Bezhanishvili, G. D’Agostino, G. Metcalfe, and T. Studer (eds.), Advances in Modal Logic 12, College Publications, 2018.

Indrzejczak, A., “Cut elimination in hypersequent calculus for some logics of linear time”, Review of Symbolic Logic 12, 4 (2019): 806–822. DOI: https://doi.org/10.1017/S1755020319000352

Indrzejczak, A., “Two is enough – bisequent calculus for S5”, pages 277–294 in A. Herzig and A. Popescu (eds.), Frontiers of Combining Systems. FroCoS 2019, Springer, 2019. DOI: https://doi.org/10.1007/978-3-030-29007-8_16

Indrzejczak, A., Sequents and Trees: An Introduction to the Theory and Applications of Propositional Sequent Calculi, Birkhäuser Basel, 2021. DOI: https://doi.org/10.1007/978-3-030-57145-0

Jaśkowski, S., “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy 7 (1999): 35–56. English translation of paper by 1948. DOI: https://doi.org/10.12775/LLP.1999.003

Kuhn, S., “Minimal non-contingency logic”, Notre Dame Journal of Formal Logic 36, 2 (1995): 230–234. DOI: https://doi.org/10.1305/ndjfl/1040248456

Kurokawa, H., “Hypersequent calculi for modal logics extending S4”, pages 51–68 in Y. Nakano, K. Satoh, and D. Bekki (eds.), New Frontiers in Artificial Intelligence, Cham: Springer, 2003. DOI: https://doi.org/10.1007/978-3-319-10061-6_4

Kuznets, R., and B. Lellmann, “Grafting hypersequents onto nested sequents”, Logic Journal of the IGPL 24, 3 (2016): 375–423. DOI: https://doi.org/10.1093/jigpal/jzw005

Lahav, O., J. Marcos, and Y. Zohar, “Sequent systems for negative modalities”, Logica Universalis 11, 3 (2017): 345–382. DOI: https://doi.org/10.1007/s11787-017-0175-2

Lahav, O., “From frame properties to hypersequent rules in modal logics”, pages 408–417 in 28th Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE, 2013. DOI: https://doi.org/10.1109/LICS.2013.47

Lellmann, B., “Axioms vs hypersequent rules with context restrictions”, pages 307–321 in S. Demri, D. Kapur, and C. Weidenbech (eds.), Proceedings of IJCAR, Cham: Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-08587-6_23

Liu, F., J. Seligman, and P. Girard, “Logical dynamics of belief change in the community”, Synthese 191, 11 (2014): 2403–2431. DOI: https://doi.org/10.1007/s11229-014-0432-3

Marcos, J., “Nearly every normal modal logic is paranormal”, Logique et Analyse 48 (2005): 189–192.

Metcalfe, G., N. Olivetti, and D. Gabbay, Proof Theory for Fuzzy Logics, Cham: Springer, 2008. DOI: https://doi.org/10.1007/978-1-4020-9409-5

Mints, G., “Some calculi of modal logic” [in Russian], Trudy Mat. Inst. Steklov 98 (1968): 88–111.

Montgomery, H., and R. Routley, “Contingency and noncontingency bases for normal modal logics”, Logique et Analyse 9 (1966): 318–328.

Montgomery, H., and R. Routley, “Noncontingency axioms for S4 and S5”, Logique et Analyse 11 (1968): 422–424.

Montgomery, H., and R. Routley, “Modalities in a sequence of normal noncontingency modal systems”, Logique et Analyse 12 (1969): 225–227.

Pan, T., and C. Yang, “A logic for weak essence and srtong accident”, Logique et Analyse 60 (2017): 179–190. DOI: https://doi.org/10.2143/LEA.238.0.3212072

Petrick, R., and F. Bacchus, “Extending the knowledge-based approach to planning with incomplete information and sensing”, pages 613–622 in D. Dubois, C. Welty, and M.-A. Williams (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), AAAI Press, 2004.

Poggiolesi, F., “A cut-free simple sequent calculus for modal logic S5”, Review of Symbolic Logic 1, 1 (2008): 3–15. DOI: https://doi.org/10.1017/S1755020308080040

Poggiolesi, F., Gentzen calculi for modal propositional logic, Springer, 2011. DOI: https://doi.org/10.1007/978-90-481-9670-8

Pottinger, G., “Uniform cut-free formulations of T, S4 and S5”, page 900 in S. Kochen, H. Leblanc, and C. D. Parsons (eds.), “Annual Meeting of the Association for Symbolic Logic, Philadelphia 1981”, Journal of Symbolic Logic 48, 3 (1983). DOI: https://doi.org/10.2307/2273495

Restall, G., “Proofnets for S5: Sequents and circuits for modal logic”, pages 151–172 in C. Dimitracopoulos, L. Newelski, D. Normann, and J. R. Steel (eds.) Logic Colloquium 2005, Cambridge University Press, 2007. DOI: https://doi.org/10.1017/CBO9780511546464.012

Small, C. G., “Reflections on Gödel’s ontological argument”, pages 109–144 in Klarheit in Religionsdingen: Aktuelle Beiträge zur Religionsphilosophie, Band III of Grundlagenprobleme unserer Zeit, Leipziger Universitätsverlag, 2001.

Steinsvold, C., “Completeness for various logics of essence and accident”, Bulletin of the Section of Logic 37, 2 (2008): 93–101.

Steinsvold, C., “A note on logics of ignorance and borders”, Notre Dame Journal of Formal Logic 49, 4 (2008): 385–392. DOI: https://doi.org/10.1215/00294527-2008-018

Steinsvold, C., “The boxdot conjecture and the language of essence and accident”, Australasian Journal of Logic 10 (2011): 18–35. DOI: https://doi.org/10.26686/ajl.v10i0.1822

van der Hoek, W., and A. Lomuscio, “A logic for ignorance”, Electronic Notes in Theoretical Computer Science 85, 2 (2004): 117–133. DOI: https://doi.org/10.1007/978-3-540-25932-9_6

Venturi, G., and P. T. Yago, “Tableaux for essence and contingency”, Logic Journal of IGPL 29, 5 (2021): 719–738. DOI: https://doi.org/10.1093/jigpal/jzaa016

von Wright, G. H., “Deontic logic”, Mind 60 (1951): 1–15. DOI: https://doi.org/10.1093/mind/LX.237.1

Zolin, E., “Sequential reflexive logics with noncontingency operator”, Mathematical Notes 72, 5–6 (2002): 784–798. DOI: https://doi.org/10.1023/A:1021485712270

Zolin, E., “Sequential logic of arithmetical noncontingency”, Moscow University Mathematical Bulletin 56 (2001): 43–48.

Zolin, E., “Completeness and definability in the logic of noncontingency”, Notre Dame Journal of Formal Logic 40, 4 (1999): 533–547. DOI: https://doi.org/10.1305/ndjfl/1012429717

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-12-16

How to Cite

1.
PETRUKHIN, Yaroslav. S5-Style Non-Standard Modalities in a Hypersequent Framework. Logic and Logical Philosophy. Online. 16 December 2021. Vol. 31, no. 3, pp. 427-456. [Accessed 23 May 2025]. DOI 10.12775/LLP.2021.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 3 (2022): September

Section

Articles

License

Copyright (c) 2021 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1609
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

hypersequent calculus, cut elimination, proof theory, modal logic, contingency logic, essence logic, accident logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop