Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Analysis of Penrose’s Second Argument Formalised in DTK System
  • Home
  • /
  • Analysis of Penrose’s Second Argument Formalised in DTK System
  1. Home /
  2. Archives /
  3. Vol. 31 No. 3 (2022): September /
  4. Articles

Analysis of Penrose’s Second Argument Formalised in DTK System

Authors

  • Antonella Corradini Università Cattolica del Sacro Cuore Milano https://orcid.org/0000-0001-8227-2226
  • Sergio Galvan Università Cattolica del Sacro Cuore Milano https://orcid.org/0000-0001-8552-1099

DOI:

https://doi.org/10.12775/LLP.2021.019

Keywords

Penrose’s second argument, Gödel’s disjunction, DT system, DTK system, computational model of mind, arguments in favour of the first horn of Gödel’s disjunction

Abstract

This article aims to examine Koellner’s reconstruction of Penrose’s second argument – a reconstruction that uses the DTK system to deal with Gödel’s disjunction issues. Koellner states that Penrose’s argument is unsound, because it contains two illegitimate steps. He contends that the formulas to which the T-intro and K-intro rules apply are both indeterminate. However, we intend to show that we can correctly interpret the formulas on the set of arithmetic formulas, and that, as a consequence, the two steps become legitimate. Nevertheless, the argument remains partially inconclusive. More precisely, the argument does not reach a result that shows there is no formalism capable of deriving all the true arithmetic propositions known to man. Instead, it shows that, if such formalism exists, there is at least one true non-arithmetic proposition known to the human mind that we cannot derive from the formalism in question. Finally, we reflect on the idealised character of the DTK system. These reflections highlight the limits of human knowledge, and, at the same time, its irreducibility to computation.

Author Biographies

Antonella Corradini, Università Cattolica del Sacro Cuore Milano

Full Professor in Philosophy of Science (Department of Psychology)

Sergio Galvan, Università Cattolica del Sacro Cuore Milano

Professor in Logic (Department of Philosophy)

References

Avron, A., 2020, “The problematic nature of Gödel’s disjunctions and Lucas-Penrose’s thesis”, Studia Semiotyczne 34 (1): 83–08. DOI: https://doi.org/10.26333/sts.xxxiv1.05

Chalmers, D. J., 1995, “Minds, machines, and mathematics: A review of Shadows of the Mind by Roger Penrose”, Journal Psyche 2 (June): 11–20.

Ebbinghaus, H. D, J. Flum and W. Thomas, 1984, Mathematical Logic, New York Berlin Heidelberg Tokyo: Springer Verlag.

Feferman, S., 1962, “Transfinite recursive progressions of axiomatic theories”, The Journal of Symbolic Logic 27: 259–316. DOI: https://doi.org/10.2307/2964649

Feferman, S., 1995, “Penrose’s Gödelian argument: A review of Shadows of the Mind by Roger Penrose”, Journal Psyche 2 (May): 21–32.

Feferman, S., 2008, “Axioms for determinateness and truth”, The Review of Symbolic Logic 1 (2): 204–217. DOI: https://doi.org/10.1017/S1755020308080209

Gentzen, G., 1969, “New version of the consistency proof for elementary number theory (1938)”, pages 252–286 in M. E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, Amsterdam: North-Holland.

Gödel, K., 1972, “On an extension of finitary mathematics which has not yet been used”, pages 271–280 in S. Feferman et al. (eds.), Collected Works, Volume II: “Publications 1938–1974” (1990), New York: Oxford University Press.

Gödel, K., 1995, “Some basic theorems on the foundations of mathematics and their implications” (1951), pages 304–323 in S. Feferman et al. (eds.), Collected Works, Volume III: “Unpublished Essays and Lectures”, New York: Oxford University Press.

Halbach, V., 2014, Axiomatic Theories of Truth, Cambridge: Cambridge University Press.

Koellner, P., 2016, “Gödel’s disjunction”, pages 148–188 in L. Horsten and P. Welch (eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge, New York: Oxford University Press.

Koellner, P., 2018a, “On the question of whether the mind can be mechanized, I: From Gödel to Penrose”, The Journal of Philosophy CXV, 7: 337–360. DOI: https://doi.org/10.5840/jphil2018115721

Koellner, P., 2018b, “On the question of whether the mind can be mechanized, II: Penrose’s New Argument”, The Journal of Philosophy CXV, 7: 453–484. DOI: https://doi.org/10.5840/jphil2018115926

Krajewski, S., 2020, “On the anti-mechanist arguments based on Gödel theorem”, Studia Semiotyczne 34 (1): 9–56. DOI: https://doi.org/10.26333/sts.xxxiv1.02

Leitgeb, H., 2009, “On formal and informal provability”, pages 263–299 in O. Bueno and Ø. Linnebo (eds.), New Waves in Philosophy of Mathematics, London New York: Palgrave Macmillan.

Lindström, P., 2001, “Penrose’s new argument”, Journal of Philosophical Logic 30 (3): 241–250. DOI: https://doi.org/10.1023/A:1017595530503

Lindström, P., 2006, “Remarks on Penrose’s new argument”, Journal of Philosophical Logic 35 (3): 231–237. DOI: https://doi.org/10.1007/s10992-005-9014-7

Lucas, J. R., 1961, “Minds, machines and Gödel, Philosophy 36: 112–127. DOI: https://doi.org/10.1017/S0031819100057983

Lucas, J. R., 1968, “Satan stultified: a rejoinder to Paul Benacerraf”, The Monist 52: 145–158. DOI: https://doi.org/10.5840/monist196852111

Mancosu, P., 1998 (ed.), From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, New York: Oxford University Press.

Mancosu, P., 1999, “Between Vienna and Berlin: the immediate reception of Gödel’s incompleteness theorems”, History and Philosophy of Logic 20: 33–45. DOI: https://doi.org/10.1080/014453499298174

Nelson, E., 1986, Predicative Arithmetic, Mathematical Notes 32, Princeton University Press: Princeton, New Jersey.

Penrose, R., 1989, The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics, New York: Oxford University Press.

Penrose, R., 1994, Shadows of the Mind. A Search for the Missing Science of Consciousness, New York: Oxford University Press.

Penrose, R., 1996, “Beyond the doubting of a shadow. A reply to commentaries on Shadows of the Mind”, Journal Psyche 2 (23): 1–40. https://www.calculemus.org/MathUniversalis/NS/10/01penrose.html

Parsons, C., 1998, “Finitism and intuitive knowledge”, pages 249–270 in M. Schirn (ed.), The Philosophy of Mathematics Today, Clarendon Press: Oxford.

Shapiro, S., 1998, “Incompleteness, mechanism, and optimism”, Bulletin of Symbolic Logic 4 (3): 273–302. DOI: https://doi.org/10.2307/421032

Shapiro, S., 2003, “Mechanism, truth, and Penrose’s new argument”, Journal of Philosophical Logic 32 (1): 19–42. DOI: https://doi.org/10.1023/A:1022863925321

Sundholm, G., 1983, “Systems of deduction”, pages 133–188 in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. I, “Elements of Classical Logic”, Dordrecht/Boston/Lancaster: D. Reidel Publishing Company.

Tait, W., 1981, “Finitism”, The Journal of Philosophy 78: 524–546, DOI: https://doi.org/10.2307/2026089

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-12-16

How to Cite

1.
CORRADINI, Antonella and GALVAN, Sergio. Analysis of Penrose’s Second Argument Formalised in DTK System. Logic and Logical Philosophy. Online. 16 December 2021. Vol. 31, no. 3, pp. 471-500. [Accessed 28 June 2025]. DOI 10.12775/LLP.2021.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 3 (2022): September

Section

Articles

License

Copyright (c) 2021 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1721
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Penrose’s second argument, Gödel’s disjunction, DT system, DTK system, computational model of mind, arguments in favour of the first horn of Gödel’s disjunction
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop